MONITORING OF MICROCLIMATIC CONDITIONS AND THE OCCURRENCE OF MICROMYCETES IN CRAWL SPACE
Keywords:
airborne fungi, crawl space, relative humidity, micromycetesAbstract
The risk of creating suitable microclimatic conditions for the growth and development of micromycetes in a crawl space is relatively high. Spores of micromycetes can infiltrate the living space through leaks in ceiling construction of the crawl space due to pressure conditions. The study is focused on monitoring microclimatic conditions and the occurrence of micromycetes in the crawl space in the Czech Republic. Samples were taken from the crawl space structures (ceiling structure and foundation walls) using sponges. Additionally, sedimentation methods were used to monitor the indoor microclimate (in the crawl space) and the outdoor microclimate. In the crawl space, spores of micromycetes of the genera Alternaria, Aspergillus, Cladosporium, Didymella, Epicoccum, Sarocladium, Sordaria and Penicillium were detected. The relative humidity in the crawl space ranged from 50% to 95% during the model year. In total, 6,659 hours were spent in the crawl space with a relative humidity of about 75%.
References
Airaksinen, M., Kurnitski, J., Pasanen, P., Seppänen, O., 2004a. Fungal spore transport through a building structure. Indoor air, 14(2), pp.92-104.
Airaksinen, M., Pasanen, P., Kurnitski, J., Seppänen, O., 2004b. Microbial contamination of indoor air due to leakages from crawl space: a field study. Indoor air, 14(1), pp.55-64.
Airaksinen, M., Olsson, L., Kurnitski, J., Hvidberg, S., 2020. Highly insulated crawl spaces with controlled minimal ventilation - Proof of concept by field measurements. E3S Web of Conferences, 172, p.7004.
ČSN EN ISO 18593 Mikrobiologie potravinového řetězce - Horizontální metody specifikující techniky vzorkování z povrchů [Microbiology of the food chain - Horizontal methods specifying sampling techniques from surfaces].
Balík, M., 2008. Odvlhčování staveb 2 [Dehumidification of buildings 2], přeprac. vyd., Praha: Grada.
Bok, G., Hallenberg, N., Åberg, O., 2009. Mass occurrence of Penicillium corylophilum in crawl spaces, south Sweden. Building and environment, 44(12), pp.2413-2417.
Crook, B., Burton, N., 2010. Indoor moulds, Sick Building Syndrome and building related illness. Fungal biology reviews, 24(3), pp.106-113.
Crous, P., 2009. Fungal biodiversity, Utrecht: CBS-KNAW Fungal Biodiversity Centre Utrecht.
Domhagen, F., Wahlgren, P., Hagentoft, C., 2021. Impact of weather conditions and building design on contaminant infiltration from crawl spaces in Swedish schools--Numerical modeling using Monte Carlo method. Building simulation, In Press.
Henschel, D., 1992. Indoor Radon Reduction in Crawl-space Houses: A Review of Alternative Approaches. Indoor air, 2(4), pp.272-287.
Hyvärinen, A., Meklin, T., Vepsäläinen, A., Nevalainen, A., 2002. Fungi and actinobacteria in moisture-damaged building materials – concentrations and diversity. International biodeterioration & biodegradation, 49(1), pp.27-37.
Isaksson, T., Thelandersson, S., Ekstrand-tobin, A., Johansson, P., 2010. Critical conditions for onset of mould growth under varying climate conditions. Building and environment, 45(7), pp.1712-1721.
Johansson, P., Samuelson, I., Ekstrand-Tobin, A., Mjörnell, K., Sandberg, P.I., Sikander, E., 2005. Microbiological growth on building materials – critical moisture levels. State of the art. , p.16. https://bwk.kuleuven.be/bwf/projects/annex41/protected/data/SP%20Oct%202005%20Paper%20A41-T4-S-05-3.pdf [Accessed 2023-03-02].
Kalhotka, L., 2014. Mikromycety v prostředí člověka: vláknité mikromycety (plísně) a kvasinky [Micromycetes in the human environment: filamentous micromycetes (molds) and yeasts], Brno: Mendelova univerzita.
Keskikuru, T., Salo, J., Huttunen, P., Kokotti, H., Hyttinen, M., Halonen, R., Vinha, J., 2018. Radon, fungal spores and MVOCs reduction in crawl space house: A case study and crawl space development by hygrothermal modelling. Building and environment, 138, pp.1-10.
Klánová, K., 2001. Standardní operační postupy pro vyšetřování mikroorganismů v ovzduší a pro hodnocení mikrobiologického znečištění ovzduší ve vnitřním prostředí, Praha: Státní zdravotní ústav v Praze [Standard operating procedures for the investigation of microorganisms in the air and for the assessment of microbiological air pollution in the indoor environment, Prague: State Health Institute in Prague.].
Klánová, K., Vrkoslavová, J., 2021. Standardní operační postupy pro vyšetřování vnitřního prostředí, Státní zdravotní ústav [Standard Operating Procedures for Indoor Environmental Investigations, State Health Institute]. http://www.szu.cz/uploads/documents/knihovna_SVI/pdf/2021/AHEM_4_2021.pdf [Accessed 2022-08-22].
Kraft, S., Buchenauer, L., Polte, T., 2021. Mold, mycotoxins and a dysregulated immune system: A combination of concern?. International journal of molecular sciences, 22(22), p.12269.
Laukkarinen, A., Vinha, J., 2017. Temperature and relative humidity measurements and data analysis of five crawl spaces. Energy Procedia, 132, pp.711-716.
Lawrence, M., 2005. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air. Bulletin of the American Meteorological Society, 86(2), pp.225-233. http://climate.envsci.rutgers.edu/pdf/LawrenceRHdewpointBAMS.pdf [Accessed 2023-07-04].
Malíř, F., Ostrý, V., 2003. Vláknité mikromycety (plísně), mykotoxiny a zdraví člověka Vyd. 1., Brno: Národní centrum ošetřovatelství a nelékařských zdravotnických oborů [Filamentous micromycetes (molds), mycotoxins and human health Ed. 1., Brno: National Center for Nursing and Non-Medical Health Professions].
Matilainen, M., Kurnitski, J., 2003. Moisture conditions in highly insulated outdoor ventilated crawl spaces in cold climates. Energy and buildings, 35(2), pp.175-187.
Mihinová, D., Piecková, E., 2007. Syndróm chorých budov – nešpecifické zdravotné ťažkosti obyvateľov problémových budov a ich príčiny. Verejné zdravotníctvo [Syndrome of sick buildings - non-specific health problems of residents of problem buildings and their causes. Public health], VII(3), p.7. http://verejnezdravotnictvo.szu.sk/SK/2010/3/Mihinova.pdf [Accessed 2023-11-08].
Mysyakina, I., Kochkina, G.A., Ivanushkina, N.E., Bokareva, D.A., Feofilova, E.P., 2016. Germination of spores of mycelial fungi in relation to exogenous dormancy. Microbiology (New York), 85(3), pp.290-294.
Pasanen, A., Kasanen, J.-pekka, Rautiala, S., Ikäheimo, M., Rantamäki, J., Kääriäinen, H., Kalliokoski, P., 2000. Fungal growth and survival in building materials under fluctuating moisture and temperature conditions. International biodeterioration & biodegradation, 46(2), pp.117-127.
Pitt, J., Robinson, R. ed., 1999. Penicillium | Introduction. Encyclopedia of Food Microbiology. Elsevier, pp. 1647-1655.
Riddell, R., 1950. Permanent Stained Mycological Preparations Obtained by Slide Culture. Mycologia, 42(2), p.265.
Risberg, M., Westerlund, L., 2020. Experimental investigation of a crawl space located in a sub-arctic climate. Results in Engineering, 7, p.100158.
Salo, J., Huttunen, P., Vinha, J., Keskikuru, T., 2018. Numerical study of time-dependent hygrothermal conditions in depressurized crawl space. Building Simulation, 11(6), p.1067.
Sedlbauer, K., 2002. Prediction of Mould Growth by Hygrothermal Calculation. Journal of building physics, 25(4), pp.321-336.
Viitanen, H., Vinha, J., Salminen, K., Ojanen, T., Peuhkuri, R., Paajanen, L., Lähdesmäki, K., 2010. Moisture and Bio-deterioration Risk of Building Materials and Structures. Journal of building physics, 33(3), pp.201-224.
Werther, N., Winter, S., 2009. Klimatische Verhältnisse in Kriechkellern unter gedämmten Holzbodenplatten. Bauphysik, 31(2), pp.59-64.
Yates, M., Nakatsu, C.H., Miller, R.V., Pillai, S.D., 2016. Manual of Environmental Microbiology (4th Edition) 4 ed., Washington, DC: American Society for Microbiology (ASM).
Zabel, R., Morrell, J., 2020. The characteristics and classification of fungi and bacteria. Wood Microbiology. United States: Elsevier Science & Technology.
Downloads
Published
How to Cite
Issue
Section
License
The Journal publishes in an open access model. It provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this Journal retain all copyrights and agree to the terms of the above-mentioned Creative Commons BY 4.0 license. See the Open Access License document.