CHEMICAL CHARACTERISATION OF EUROPEAN BEECH (Fagus sylvatica L.) MATURE WOOD AND FALSE HEARTWOOD

Authors

  • Eva Výbohová Technical university in Zvolen, Slovakia
  • Anna Oberle Mendel University in Brno, Czechia

Keywords:

false heartwood, European beech, chemical composition, polyphenolic extractives, FTIR

Abstract

False heartwood in European beech (Fagus sylvatica L.) is a significant defect reducing the usability of the wood for aesthetic reasons. The aim of this work was to compare the chemical composition of mature wood and false heartwood of beech regarding their different coloring. The content of the main wood components, extractives, polyphenolic compounds, and soluble carbohydrates was determined. In addition, FTIR (Fourier transform infrared spectroscopy) analysis of mature wood, border zones and false heartwood was also performed. Chemical analyses showed a slightly higher content of holocellulose in false heartwood compared to mature wood. The differences in cellulose and lignin content are minimal. The content of both lipophilic and hydrophilic extractives is higher in mature wood. Hydrophilic extract from mature wood contains more phenolics and soluble carbohydrates compared to false heart. According to ATR-FTIR (Attenuated total reflectance Fourier transform infrared spectroscopy) analysis it can be assumed that there is an increase in the content of polyphenolic extractives in the border zone, especially in the darkest colored zone next to the false heart.

References

Albert, L., Hofmann, T., Visi-Rajczi, E., Rétfalvi, T., Németh, Zs. I., Koloszár, J., Varga, Sz., 2002. Relationships among total phenol and soluble carbohydrate contents and activities of peroxidase and polyphenol oxidase in red-heartwooded beech (Fagus sylvatica L.). Proc. 7th European Workshop on Lignocellulosics and Pulp Towards molecular-level understanding of wood, pulp and paper, Turku, Finnland.

Andersen, Ø. M., Markham, K. R., 2006. Flavonoids: chemistry, biochemistry, and applications, Taylor & Francis, New York.

ASTM D 1110-84, 1995. Standard Test Methods for Water Solubility of Wood. ASTM International: West Conshohocken, PA, USA.

ASTM D 1106–96, 2013. Standard Test Method for Acid Insoluble Lignin in Wood. ASTM International: West Conshohocken, PA, USA.

ASTM D 1107–96, 2013. Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International: West Conshohocken, PA, USA.

Barański, J., Klement, I., Vilkovská, T., Konopka, A., 2017. High temperature drying process of beech wood (Fagus sylvatica L.) with different zones of sapwood and red false heartwood. BioResources 12, 1861–1870. https://doi.org/10.15376/biores.12.1.1861-1870

Bhagia, S., Ďurkovič, J., Lagaňa, R., Kardošová, M., Kačík, F., Cernescu, A., Schäfer, P., Yoo, Ch. G., Ragauskas, A. J., 2022. Nanoscale FTIR and Mechanical Mapping of Plant Cell Walls for Understanding Biomass Deconstruction. ACS Sustainable Chemistry & Engineering, 10, 3016-3026. https://doi.org/10.1021/acssuschemeng.1c08163

Čermák, P., Dejmal, A., Paschová, Z., Kymäläinen, M., Dömény, J., Brabec, M., Hess, D., Rautkari, L., 2019. One-sided surface charring of beech wood. Journal of Materials Science 54, 9497–9506. https://doi.org/10.1007/s10853-019-03589-3

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry 28, 350–356

Dzurenda, L., 2023. Natural Variability of the Color of Beech Wood in the Color Space CIE L*a*b*. Forests, 14, 1103. https:// doi.org/10.3390/f14061103

Feist, W. C., Hon, D. N.-S., 1984. Chemistry of weathering and protection. Advances in Chemistry Series, 207, 401–454. https://doi.org/10.1021/ba-1984-0207.ch011

Hofmann, T., Albert, L., Rétfalvi, T., Visi-Rajczi, E., Brolly, G., 2008. TLC Analysis of the In-Vitro Reaction of Beech (Fagus sylvatica L.) Wood Enzyme Extract with Catechins. Journal of Planar Chromatography, 21, 83–88. https://doi.org/10.1556/JPC.21.2008.2.2

Hofmann, T., Guran, R., Zitka, O., Visi-Rajczi, E., Albert, L., 2022. Liquid Chromatographic/Mass Spectrometric Study on the Role of Beech (Fagus sylvatica L.) Wood Polyphenols in Red Heartwood Formation. Forests 13, 10. https://doi.org/10.3390/f13010010

Hon D.N.S., Shiraishi N., 2001. Wood and Cellulosic Chemistry. Marcel Dekker, New York.

Hörnfeldt, R., Drouin, M., Woxblom, L., 2010. False heartwood in beech Fagus sylvatica, birch Betula pendula, B. papyrifera and ash Fraxinus excelsior - an overview. Ecological Bulletins 53, 61–75.

Kačík, F., Solár, R., 2000. Analytical Chemistry of Wood, 1st ed., Technical University in Zvolen: Zvolen, Slovakia.

Klement, I., Vilkovská, T., 2019. Color Characteristics of Red False Heartwood and Mature Wood of Beech (Fagus sylvatica L.) Determining by Different Chromacity Coordinates. Sustainability, 11, 690. https://doi.org/10.3390/su11030690

Knoke, T., 2003. Predicting red heartwood formation in beech trees (Fagus sylvatica L.). Ecological Modelling, 169, 295-312. https://doi.org/10.1016/S0304-3800(03)00276-X

Koch, G., Puls, J., Bauch, J., 2003. Topochemical Characterisation of Phenolic Extractives in Discoloured Beechwood (Fagus sylvatica L.). Holzforschung, 57, 339–345. https://doi.org/10.1515/HF.2003.051

Kúdela, J., Čunderlík, I., 2012. Bukové drevo - štruktúra, vlastnosti, použitie. (Beech Wood - Structure Properties and Use). Technical University in Zvolen, Zvolen.

Liu, X.Y., Timar, M.C., Varodi, A.M., Yi S.L., 2016. Effect of Ageing on the Color and Surface Chemistry of Paulownia Wood (P. elongata) from Fast Growing Crops. Bioresources, 11, 9400–9420. https://doi.org/10.15376/biores.11.4.9400-9420

Nečesaný, V., 1958. Jádro buku - struktura, vznik a vývoj. Vydavateľstvo Slovenskej akadémie vied, Bratislava.

Németh, R., Hill, C.A.S., Takats, P., Tolvaj, L., 2016. Chemical changes of wood during steaming measured by IR spectroscopy. Wood Material Science & Engineering, 11, 95–101, http://dx.doi.org/10.1080/17480272.2014.961169

Pandey, K. K., 2005. Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation and Stability, 90, 9–20. https://doi.org/10.1016/j.polymdegradstab.2005.02.009

Pérez-Jiménez, J., Díaz-Rubio, M. E., and Saura-Calixto, F., 2014. Non-Extractable Polyphenols in Plant Foods. Polyphenols in Plants, 203–218. https://doi.org/10.1016/B978-0-12-397934-6.00010-3

Račko, V., Čunderlík, I., 2007. Influence of selected growth factors on size of ripewood zone in beech. Acta Facultatis Xylologiae Zvolen, 49, 5−15.

Račko, V., Čunderlík, I., 2010. Which of the factors do significantly affect beech false heartwood formation? „Hardwood Science and Technology” The 4th Conference on Hardwood Research and Utilisation in Europe, Sopron, Hungary.

Sablík, P., Giagli, K., Pařil, P., Baar, J., Rademacher, P., 2016. Impact of extractive chemical compounds from durable wood species on fungal decay after impregnation of nondurable wood species. European Journal of Wood and Wood Products 74, 231–236. https://doi.org/10.1007/s00107-015-0984-z

Sedliačiková, M., Moresová, M., 2022. Are Consumers Interested in Colored Beech Wood and Furniture Products? Forests, 13, 1470. https://doi.org/10.3390/f13091470

Slabejová, G., 2013, Photostability of transparent surface coatings of beech wood. Acta Facultatis Xylologiae Zvolen, 55, 5−12.

Stark, N. M., Yelle, D. J., Agarwal, U. P., 2015. Techniques for Characterizing Lignin. Lignin in polymer composites. https://doi.org/10.1016/B978-0-323-35565-0.00004-7

Suchomel, J., Gejdoš, M., 2010. The influence of selected factors on the occurrence of false heartwood in beech (Fagus sylvatica). Acta Facultatis Xylologiae Zvolen, 52, 5−13.

Trenčiansky, M., Lieskovský, M., Merganič, J., Šulek, R., 2017. Analysis and evaluation of the impact of stand age on the occurrence and metamorphosis of red heartwood. iForest, 10, 605-610. https://doi.org/10.3832/ifor2116-010

Vek, V., Oven, P., Poljanšek, I., 2013. Content of Total Phenols in Red Heart and Wound-Associated Wood in Beech (Fagus sylvatica L.). Drvna industrija 64, 25–32. https://doi.org/10.5552/drind.2013.1224

Vek, V., Oven, P., Poljanšek, I., Ters, T., 2015. Contribution to Understanding the Occurrence of Extractives in Red Heart of Beech. BioResources 10, 970–985. https://doi.org/10.15376/biores.10.1.970-985

Vek, V., Oven, P., Poljanšek, I., 2016. Review on Lipophilic and Hydrophilic Extractives in Tissues of Common Beech. Drvna industrija 67, 85-96. https://doi.org/10.5552/drind.2016.1511

Visi-Rajczi, E., Levente, A., Hofmann, T., Sárdi, É., Koloszár, J., Varga, Sz., Cepregi, I., 2003. Storage and accumulation of nonstructural carbohydrates in trunks of Fagus sylvatica L. in relation to discoloured wood. Wood Science and Technology, 330-334

Wei, L., Ma, R., Fu, Y., 2022. Differences in Chemical Constituents between Dalbergia oliveri Heartwood and Sapwood and Their Effect on Wood Color. Molecules 27, 7978. https://doi.org/10.3390/molecules27227978

Downloads

Published

2023-12-12

How to Cite

Výbohová, E., & Oberle, A. (2023). CHEMICAL CHARACTERISATION OF EUROPEAN BEECH (Fagus sylvatica L.) MATURE WOOD AND FALSE HEARTWOOD. Acta Facultatis Xylologiae Zvolen, 65(2), 13–24. Retrieved from https://ojs.tuzvo.sk/index.php/AFXZ/article/view/87