AUTOMATION OF TEMPLATE CORRECTION ALGORITHM FOR QUALITY IMPROVEMENT OF PSEUDO-3D ENGRAVED IMAGES
Keywords:
laser engraving, wood, half-tone wedge, template correction, tone rangeAbstract
The method of correcting templates of pseudo-3D images engraved on wood and wooden materials is proposed. The key elements of the method comprise initial engraving of the test model with an optic density gradient, measurement followed by further analysis of the engraving optical density, finding the threshold values of the workpiece material tone, and correction of the image output values. The algorithm is composed, and the variant for automating the template design is proposed. A more complete reproduction of light-and-dark gradations of the image engraved is achieved in the material, and the template design is accelerated and simplified. The experiments confirming the efficiency of the proposed approach were carried out.
References
Chernykh, M., Yapparova, E., 2012. The technique of designing a raster image layout for laser engraving of wood. Design. Materials. Technology, 2(22): 78-81, ISS IV: 1990-997.
Chernykh, M., Kargashina, E., Stollmann, V., 2013. Assessing the ipact of aesthetic properties characteristics on wood decorativeness. Acta Facultatis Xylogiae Zvolen, 55(1): 13-26.
Chernykh, M., Kargashina, E., Stollmann, V., 2018. The use of wood veneer for Laser engraving production. Acta Facultatis Xylogiae Zvolen, 60(1): 121-128. https://doi.org/10.17423/afx.2018. 60.1.13
Color models. Color spaces. Additive and subtraction synthesis [Electronic source] / Accessible at: https: //clcr.ru/34wiGf (reference date: 29.06.2023).
Eltvani, H., N., Rossini, M., Dassisti, K., AlRashid, T., Aldakham, K., Benyounis, A., Olabi, A., G., 2013. Evaluation and optimization of laser cutting parameters of plywood materials. Optics and Lasers Engineering, 51(9):1029-1043, ISSN: 0143-8166. https://doi.org/10.1016/j.optlaseng.2013.02.019
Geffert, A., Vybohova, E., Geffertova, J., 2017. Characterization of the changes of colour and some wood components on the surface of steamed beech wood. Acta Facultatis Xylogiae Zvolen, 59(1): 49-57, ISSN: 1366-3824, https://doi.org/10.17423/afx.2017.59.1.05
Gochev, Z., Vichev, P., 2022. Color modifications in plywood by different modes of CO2 laser engraving. Acta Facultatis Xylologiae Zvolen, 64(2): 77-86. https://doi.org/10.17423/afx.2022.64.2.08
Gorny, S., Ryafhovskih, S., 2009. Principles of laser marking of industrial materials. Technical Council, 9(72): 16-23, ISSN: 1993-7296.
GOST 24930-81, 1981. Half-tone wedge for facsimile equipment.
GOST 28267-89,1989. 64-Gb half-tone raster wedge for facsimile devices.
Hernandez-Castaneda, J., C., Sezer, H., K., Li, L., 2011. The effect of moisture content infibre laser cutting of pine wood. Optics and Lasers in Engineering, 49(9-10):1139-1152, ISSN: 0143-8166, https://doi.org/10.1016/j.optlaseng.2011.05.008
Kubovsky, I., Kacik, F., Reinprecht, L., 2016. The impact of UV radiation on the change of color and composition of the surface of lime wood treated with a CO2 laser. Journal of Photochemistry and Photobiology A: Chemistry, 322, 60-66, https://doi.org/10.1016/j.jphotochem.2016.02.022
Kumpan, E., 2015. Interpretation of lace in modern clothing using laser perforation and engraving. Bulletin of the Technological University, 10: 136-138.
Lungu, A., Timar, M.,C., Beldean, E.,C., Georgescu, S., V., Cosereanu, C., 2022. Adding Value to Maple (Acer pseudoplatanus) Wood Furniture Surfaces by Different Methods of Transposing Motifs from Textile Heritage. Coatings, 12, 1393. https://doi.org/10.3390/coatings12101393
Makarov, A., Grachev, A., Safin, R., Shaimullin, A., 2011. Mathematical model of thermal decomposition of wood in ablative mode. Journal of bulletin of Kazan technological university, 68-72.
Martinez-Conde, A., T., Krenke, S., Frybort, U., Miller, U., 2017. Review: Comparative analysis of CO laser and conventional sawing for cutting of lumber and wood-based materials. Wood Sci. Technol., 51: 943-966, https://link.springer.com/article/10.1007/s00226-017-0914-9.
Parfenov, V., Gerashchenko, A., Kirtsideli, I., 2011. Laser cleaning as a way to combat biological damage to monuments. Materials of the seminar problems of restoration and preservation of cultural and historical monuments, 2009-2010: 34-35.
Petutschnigg, A., Steckler, M., Steinwendner, F., Schnepps, J., Gitler, H., Blinzer, J. Holze, H., Schnabel, T., 2013. Laser treatment of wood surfaces for ski cores: An experimental parameter study. Advances in Materials Science and Engineering, 1-7, https://doi.org/10.1155/2013/123085
Vidholdova, Z., Reinprecht, L., Igaz, R., 2017. The impact of laser surface modification of beech wood on its color and occurence of molds. BioResources. 12(2), 4177-4186.
Yakimovich, B., Chernzkh, M., Stepanova, A., Siklienka, M., 2016. Influence are selected laser parameters on quality of images engraved on the wood. Acta Facultatis Xylologiae Zvolen, 58(2): 45-50.
Zykova, M., Chernykh, M., Stollmann, V., Gilfanov, М., 2022. The influence of the laser engraving mode of wood on the aesthetic perception of images. Acta Facultatis Xylologiae Zvolen, 64(2): 87−96.
Laser CO2 marker with CNC GCC Synrad 30 W. Report, 2023 [WWW Document], URL https://www.gccworld.com/en/product/co2-laser-engraver-cutter-marking-machine.
А2 – 1996 – IEEE Standard Facsimile Test Chart: High Contrast (Gray Scale).
Downloads
Published
How to Cite
Issue
Section
License
The Journal publishes in an open access model. It provides immediate open access to its content under the Creative Commons BY 4.0 license. Authors who publish with this Journal retain all copyrights and agree to the terms of the above-mentioned Creative Commons BY 4.0 license. See the Open Access License document.