MEASUREMENT OF THE ROUGHNESS OF THE SANDED SURFACE OF BEECH WOOD WITH THE PROFILE MEASUREMENT SOFTWARE OF THE KEYENCE VHX-7000 MICROSCOPE
Keywords:
surface roughness, Keyence VHX microscope, optical profilometer, eccentric sander, beech woodAbstract
Sanding is the most important way of reducing unevenness and preparing the surface for the final treatment. To optimize sanding, it is necessary to quantify the effect of abrasive grit size on surface roughness. The paper deals with the methodology of measuring the surface roughness parameter Ra of beech wood (Fagus sylvatica L.) using a Keyence VHX-7000 digital microscope. After milling, the samples were sanded with abrasives with grit size from P40 to P150, using an eccentric sander. Roughness was evaluated in two directions according to ISO 21920 (2022) standards. Using a two-factor analysis of variance the positive effect of grit size on roughness was proven. It improved on average by 38% in the direction perpendicular to the grain and by 20% parallel to the grain. The theoretical knowledge about equalizing the unevenness of the surface by sanding and reducing the difference between the roughness in two directions is proven in the paper.
References
Aslan, S., Coşkun, H., Kilic, M., 2008. The effect of the cutting direction, number of blades and grain size of the abrasives on surface roughness of Taurus cedar (Cedrus Libani A. Rich) woods. Building and Environment. 43(5), 696-701. http://doi.org/10.1016/j.buildenv.2007.01.048
Cota, H., Dritan, A., Habipi, B., 2017. The influence of machining process on wood surface roughness. In Agricultural Sciences. 16(7), 277-283.
Gaff, M. and Kaplan, L. 2016. The influence of feed and cutting speed on machining quality. Drevársky magazín. Banská Bystrica: Trendwood – twd, s.r.o., 16(3), 3-4. ISSN 1338-3701.
Gurau, L., 2010. An objective method to measure and evaluate the quality of sanded wood surfaces. The final conference of COSTaction E53: The future of quality control for wood and woodproducts. Edinburgh.
Gurau, L., 2013. Analyses of roughness of sanded oak and beech surface. In PRO LIGNO. 9(4), 741-750. ISSN-L 1841-4737.
Gurau, L., Csiha, C. & Mansfield-Williams, H. 2015. Processing roughness of sanded beech surfaces. In Eur. J. Wood Prod. 73, 395–398. https://doi.org/10.1007/s00107-015-0899-8
Gurau, L., Irle, M., Buchner, J., 2019. Surface roughness of heat treated and untreated beech (Fagus sylvatica L.) wood after sanding. BioResources. 14(2), 4512-4531. https://doi.org /10.15376/biores.14.2.4512-4531
Gurau, L., Mansfield-Williams, H., Irle, M. 2005. The influence of wood anatomy on evaluating the roughness of sanded solid wood. Journal of the Institute of Wood Science. 17(2), 65-74. https://doi.org/10.1179/wsc.2005.17.2.65
Gurau, L., Mansfield-Williams, H., Irle, M., 2006. The influence of wood anatomy on evaluating the roughness of sanded solid wood. Journal of the Institute of Wood Science. 17(2), 65-74. https://doi.org/10.1179/wsc.2005.17.2.65
Kaplan, L., Kvietková, M., Sikora, A., Sedlecký, M. 2018b. Evaluation of the effect of individual paramaters of oak wood machining and their impact on the values of waviness measured by a laser profilometer. Wood Research. 63 (1), 127-140. ISSN 2729-8906.
Kaplan, L., Sedlecký, M., Kvietková, M., Sikora, A. 2018a. The Effect of Thermal Modification of Oak Wood on Waviness Values in the Planar Milling Process, Monitored with a Contact Method. BioResources. 13 (1), 1591-1604. https://doi.org/10.15376/biores.13.1.1591-1604
Kminiak, R. 2014. Effect of the saw blade construction on the surface quality when transverse sawing spruce lumber on crosscut miter saw. Acta Facultatis Xylologiae Zvolen. 56 (2), 87-96. ISSN 1336-3824.
Kubš, J., Gaff, M., Barcík, Š. 2016. Factors affecting the consumption of energy during the of thermally modified and unmodified beech wood. BioResources. 11(1), 736-747. https://doi.org/10.15376/biores.11.1.736-747
Kúdela, J., Mrenica, L., Javorek, Ľ., 2018. The influence of milling and sanding on wood surface morphology. Acta Facultatis Xylologiae Zvolen. Zvolen, 60(1), 71-83. https://doi.org/10.17423/afx.2018.60.1.08
Kvietková, M., Gaff, M., Gašparík, M., Kaplan, L., Barcík, Š. 2015a. Surface quality of milled birch wood after thermal treatment at various temperatures. BioResources. 10(4), 6512-6521. https://doi.org/10.15376/biores.10.4.6512-6521
Kvietková, M., Gašparík, M., Gaff, M. 2015b. Effect of thermal treatment on surface quality of beech wood after plane milling. BioResources. 10(3), 4226-4238. https://doi.org/10.15376/biores.10.3.4226-4238
Magoss, E. 2008. General regularities of wood surface roughness. Acta Silv Lign Hung. 4, 81-93, ISSN 1787064X.
Sandak, J. and Negri, M., 2005. Wood surface roughness- What is it?. In Proceedings of the 17th International Wood Machining Seminar (IWMS 17). Rosenheim. 242-250.
STN EN ISO 21920-2, 2022. Geometrical product specifications (GPS) - Surface texture: Profile - Part 2: Terms, definitions and surface texture parameters (ISO 21920-2:2021).
STN EN ISO 21920-3, 2022. Geometrical product specifications (GPS) - Surface texture: Profile - Part 3: Specification operators (ISO 21920-3:2021)
STN EN ISO 4287, 1999. Geometrical Product Specifications (GPS). Surface texture: Profile method - Terms, definitions and surface texture parameters.
STN EN ISO 4288, 1999. Geometrical product specifications (GPS). Surface texture: Profile method. Rules and procedures for the assessment of surface texture.
Vitosyté, J., Ukvalbergiené, K., Keturakis, G., 2015. Roughness of Sanded Wood Surface: an Impact of Wood Species, Grain Direction and Grit Size of Abrasive Material. Materials science. 21(2). 255-259. http://doi.org/10.5755/j01.mm.21.2.5882
Zhong, Z.W., Hiziroglu, S., Chan, C. 2013. Measurement of the surface roughness of wood based materials used in furniture manufacture. Measurement. 46, 1482–1487. https://doi.org/10.1016/j.measurement.2012.11.041
Downloads
Published
How to Cite
Issue
Section
License
The Journal publishes in an open access model. It provides immediate open access to its content under the Creative Commons BY 4.0 license.