INNOVATIVE COMPOSITIONS OF STRUCTURAL ELEMENTS AND THEIR ESTIMATED FIRE RESISTANCE

Authors

  • Ľudmila Tereňová Technical University in Zvolen, Slovakia
  • Daria Mokrenko Technical University of Košice, Slovakia
  • Mária Kozlovská Technical University of Košice, Slovakia

Keywords:

structural element; magnesium oxide board; thermal insulation core; expected fire resistance; medium-scale test.

Abstract

The paper is focused on the investigation of innovative compositions of structural elements suitable mainly for use in timber constructions, with respect to determining their expected fire resistance. The examined compositions of structural elements meet several requirements that contribute to both the energy efficiency and fire safety of buildings. The tested structures consisted of magnesium oxide boards forming the sheathing of the samples, combined with various types of thermal insulation cores (PUR foam, paper honeycomb, and straw mixed with MgO mortar). The expected fire resistance was determined by conducting medium-scale fire tests simulating the progression of a fully developed compartment fire. The samples were exposed to radiant heat from a radiation panel with an output of 20 kW·m⁻². The best results were achieved by the sample containing the straw and MgO mortar mixture, which reached an estimated fire resistance of 90 to 120 minutes, confirming the suitability of this material combination in the composition of the structural element. The sample with the honeycomb core achieved an assumed fire resistance of 30 to 45 minutes, while the sample with PUR thermal insulation had the lowest, at 15 minutes.

References

Abdul Motaleb, K. Z. M., Pranta, A. D., Repon, M. R., Karim, F. E. , 2024. Preparation and characterization of MgO based composites: Analysis of moisture, corrosion, and fungal resistance, and mechanical properties. Construction and Building Materials 447, 137926. https://doi.org/10.1016/j.conbuildmat.2024.137926

Baláž, P., 2008. Slovenský magnezit. Enviromagazín 6/2008/Slovak magnesite. Enviromagazin 6/2008 online. https://www.enviromagazin.sk (accessed on 23 October 2025).

Caustic-Calcined-magnezite. Star Grace Mining CO., Limited online. https://sk.magnesium-fertilizer.com/mineral-fertilizer/magnesium-oxide-fertilizer/caustic-calcined-magnesite-1.html (accessed on 13 October 2025).

Dubecký, D., Špak, M., Kozlovská, M., 2017. Experimental Preparation of Magnesium Oxide Board. Applied Mechanics and Materials, Vol. 861, pp. 11-18, 2017. ISSN 1662-7482.

Džidić, S., Miličić, I. M., 2017 Fire resistance of the straw bale walls, in: 5th International Conference Contemporary Achievements in Civil Engineering. Subotica, pp. 423-432. htttps://doi:10.14415/konferencijaGFS2017.044

Chen, D., 2025. How does interior MgO board perform in a fire, Jiangsu, China online. https://sk.leader-board.net/blog/how-does-interior-mgo-board-perform-in-a-fire-549447.html (accessed on 22 October 2025).

Iqra, Soe, K., Yang, R., Zhang, Y.X., 2025. A Review of Recent Advances in MgO-Based Cementitious Composites for Green Construction: Mechanical and Durability Aspects. Buildings, 15, 3513. https://doi.org/10.3390/buildings15193513

Jandačka, J., Holubčík, M., 2020. Emissions production from small heat sources depending on various aspects. Mob. Netw. Appl. 25, pp. 904–912 (Google Scholar) (CrossRef)

Jensen, L. S., 2000. European classification of products for reaction to fire - DS/EN 13501-1. Fire Technology, 36: 95-103.

Lee, J. 2025. Is the honeycomb core fire resistant? China online. https://sk.cnsanmachineryru.com/blog/is-a-honeycomb-core-fire-resistant-171831.html (accessed on 24 October 2025).

Maršál, K., 2016. Fire reaction of thermal insulating materials. Advanced Building Materials. Springer, Cham. p. 191-197.

Mokrenko, D., Kozlovská, M., 2020. Comparative analysis of magnesium oxide boards properties.

IOP Conference Series Materials Science and Engineering 867. https://doi:10.1088/1757-899X/867/1/012032

Morais, C. R., Pinto, G. L., Mendes, A., 2024. Sustainable carbonaceous raw materials: A contribution to reduce the negative environmental impacts of chemical industry. Current Opinion in Green and Sustainable Chemistry, 49, 100913.

STN EN 1363-1: 2021 Skúšanie požiarnej odolnosti. Časť 1: Základné požiadavky [Fire resistance testing - Part 1: Basic requirements].

STN EN 13501-1:2019 Klasifikácia požiarnych charakteristík stavebných výrobkov a prvkov stavieb. Časť 1: Klasifikácia využívajúca údaje zo skúšok reakcie na oheň [Classification of reaction to fire performance of construction products and building elements - Part 1: Classification using data from reaction to fire tests].

Švajlenka, J., Kozlovská, M., Mokrenko, D., 2021. MgO-Based Board Materials for Dry Construction Are a Tool for More Sustainable Constructions – Literature Study and Thermal Analysis of Different Wall Compositions. Sustainability 2021, 13(21), 12193. https://doi.org/10.3390/su132112193

Tereňová, Ľ., 2024. Protipožiarna bezpečnosť PUR a PIR panelov. Požární ochrana 2024 – Recenzovaný sborník abstraktů XXXIII. ročníku mezinárodní konference/Fire safety of PUR and PIR panels. Fire protection 2024 – Peer-reviewed proceedings of the XXXIII International Conference. Ostrava: SPBI, 2024. pp. 112-117.

Tlaiji, G., Biwole, P., Ouldboukhitine, S., Pennec, F., 2022. A Mini-Review on Straw Bale Construction. Energies 2022, 15, 7859. https://doi.org/10.3390/en15217859

Voroncov, V., 2008. Natural materials in architecture: training aid (Belgorod, Russia) Voština. Harona, s.r.o. online. https://vostina.com/ (accessed on 15 October 2025).

Downloads

Published

2025-12-15

How to Cite

Tereňová, Ľudmila, Mokrenko, D., & Kozlovská, M. (2025). INNOVATIVE COMPOSITIONS OF STRUCTURAL ELEMENTS AND THEIR ESTIMATED FIRE RESISTANCE. Acta Facultatis Xylologiae Zvolen, 67(2), 101–116. Retrieved from https://ojs.tuzvo.sk/index.php/AFXZ/article/view/197