COMPARATIVE COLOUR ANALYSIS OF THERMALLY MODIFIED SELECTED TEMPERATE HARDWOODS AND TROPICAL WOOD SPECIES USING PRINCIPAL COMPONENT ANALYSIS
Keywords:
colour; hardwood; PCA analysis; thermal modification; tropical woodAbstract
Thermal modification is an eco-friendly and cost-effective method for enhancing the optical properties of wood by darkening its colour throughout the cross-section due to chemical changes. In this study, the colour coordinates (L*, a*, b*) of thermally modified temperate hardwoods native to Central Europe were statistically compared to those of selected tropical species. The tested species ‒ European ash, European beech, paper birch, black locust, European hornbeam, and pedunculate oak ‒ were treated at 200°C for 3 hours. The analysis revealed that thermal modification effectively altered their colour, in some cases achieving a visual resemblance to tropical woods. Pedunculate oak and black locust closely resembled wengé, while European beech approximated the appearance of ipé. Other hardwoods only partially matched tropical tones. These findings confirm the potential of thermally modified local hardwoods to substitute tropical species in interior and furniture applications, supporting more sustainable and regionally focused utilization for biological stains.
References
Babiak, M., Kubovský, I., Mamoňová, M., 2004. Color space of the selected domestic species. in Interaction of Wood with Various Forms of Energy, Kurjatko, S., Kúdela, J., Eds.; Zvolen: Technical University in Zvolen, 113–117.
Da Silva, R.A.F., Setter, C., Mazette, S.S., de Melo, R.R., Stangerlin, D.M., 2017. Colorimetry of wood from thirty tropical species. Ciência da Madeira (Brazilian Journal of Wood Science) 8, 1, 36–41. https://doi.org/10.12953/2177-6830/rcm.v8n1p36-41
Dudiak, M., Kminiak, R., Banski, A., Chuchala, D. 2024. The Effect of Steaming Beech, Birch and Maple Woods on Qualitative Indicators of the Surface. Coatings 14, 117. https://doi.org/10.3390/coatings14010117
Dzurenda, L., 2022. Range of color changes of beech wood in the steaming process. BioResources, 17, 1, 1690. https://doi.org/10.15376/biores.17.1.1690–1702
Dzurenda, L., 2023. Natural Variability of the Color of Beech Wood in the Color Space CIE L* a* b*. Forests, 14, 6, p.1103. https://doi.org/10.3390/f14061103
Gandelová, L., Horáček., P., Šlezingerová, J., 2009. The science of wood. Mendel University of Agriculture and Forestry in Brno. 176 p.
Geffert, A., Výbohová, E., Geffertová, J. 2019. Changes in the chemical composition of oak wood due to steaming. Acta Facultatis Xylologiae Zvolen, 61, 1, 19–29. https://doi.org/10.17423/afx.2019.61.1.02
Geffert, A., Geffertová J., Dudiak, M. Výbohová, E. 2020. Influence of steaming temperature on chemical characteristics and colour of alder wood. Trieskove a beztrieskove obrabanie dreva 12, 49–56.
Hill, C. A., 2007. Wood modification: chemical, thermal and other processes. John Wiley & Sons.
Hill, C., Altgen, M. Rautkari, L., 2021. Thermal modification of wood-a review: chemical changes and hygroscopicity. Journal of Materials Science 56, 6581–6614. https://doi.org/10.1007/s10853-020-05722-z
Hon, D.N.-S., Minemura, N., 2000. Color and discoloration. in: Wood and Cellulosic Chemistry, 2nd ed.; Hon, D.N.-S., Shiraishi, N., Eds.; CRC Press: New York, USA, 385–442.
Hrčková, M., Koleda, P., Barcik, Š., Štefková, J., 2018. Color change of selected wood species affected by thermal treatment and sanding. Bioresources 13. https://doi.org/10.15376/biores.13.4.8956-8975
Janin, G., Gonçalez, J.C., Ananías, R., Charrier, B., Silva, G.F.D., Dilem, A., 2001. Aesthetics appreciation of wood colour and patterns by colorimetry. Part 1. Colorimetry theory for the CIE Lab system. Maderas: Ciencia y Tecnología 3, 14. http://dx.doi.org/10.4067/S0718-221X2001000100001
Katuščák, S., Kučera, J., 2000. CIE orthogonal and cylindrical color parameters and the color sequences of the temperate wood species. Wood Research 45, 9–21.
Meints, T., Teischinger, A., Stingl, R., Hansmann, C., 2017. Wood colour of central European wood species: CIE Lab characterisation and colour intensification. European Journal of Wood and Wood Products 75, 499–509. https://doi.org/10.1007/s00107-016-1108-0
Ortiz-Hidalgo, C., Pina-Oviedo, S., 2019. Hematoxylin: Mesoamerica’s gift to histopathology. Palo de Campeche (logwood tree), pirates’ most desired treasure, and irreplaceable tissue stain. International Journal of Surgical Pathology 27(1), 4–14. https://doi.org/10.1177/1066896918787652
Sandak, A., Sandak, J., Allegretti, O., 2015. Quality control of vacuum thermally modified wood with near infrared spectroscopy. Vacuum, 114, 44–48. https://doi.org/10.1016/j.vacuum.2014.12.027
Sandberg, D., Kutnar, A., Karlsson, O., Jones, D., 2021. Wood modification technologies: principles, sustainability, and the need for innovation. CRC Press.
Slabejová, G., Šmidriaková, M., Fekiač, J., 2016. Gloss of transparent coating on beech wood surface. Acta Facultatis Xylologiae Zvolen 58, 37–44. https://doi.org/10.17423/afx.2016.58.2.04
Tolvaj, L., Persze, L., Lang, E., 2013. Correlation between hue angle and lightness of wood species grown in Hungary. Wood Research 58, 141–145.
Vidholdová, Z., Reinprecht, L., 2011. Thermowood. Šmíra-Print, 89 p.
Vidholdová, Z., Reinprecht, L., Iždinský, J., 2017. Microbial resistance of tropical woods. Zvolen: Technical University in Zvolen (in Slovak), Technical university in Zvolen, 67 p.
Vidholdová, Z., Sandak, A., Sandak, J., 2019. Assessment of the chemical change in heat treated pine wood by near infrared spectroscopy. Acta Facultatis Xylologiae Zvolen 61, 1, 31–42. https://doi.org/10.17423/afx.2019.61.1.03
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Zuzana Vidholdová, Tatiana Hýrošová

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal publishes in an open access model. It provides immediate open access to its content under the Creative Commons BY 4.0 license.