KINETICS AND MODELLING OF WATER ABSORPTION PROCESSES IN DIFFERENT TREE SPECIES

Authors

  • Sergiy Kulman Polissia National University, Ukraine
  • Oleksandra Horbachova National University of Life and Environmental Sciences of Ukraine
  • Anatolii Vyshnevskyi Polissia National University, Ukraine
  • Ján Sedliačik Technical University in Zvolen, Slovakia

Keywords:

wood; water absorption; saturation kinetics; parameter sensitivity analysis; mathematical model.

Abstract

A novel two-stage kinetic model for simulating water absorption in wood is presented, explicitly accounting for simultaneous absorption and evaporation in the longitudinal direction and addressing limitations of prior models focused primarily on drying or radial sorption. Water absorption was investigated by partial immersion of samples from three tree species – paulownia (Paulownia in vitro), alder (Alnus glutinosa), and pine (Pinus sylvestris). A computational experiment was conducted using parameter sensitivity analysis of the developed mathematical model. The model demonstrates high fidelity in describing sorption kinetics, with correlation coefficients reaching 85% for absorption (logarithmic dependence) and over 90% for dehydration (exponential reliance). At 20 °C, the paulownia absorption rate exceeded alder by 8% and pine by 23%. These findings enhance understanding of moisture transport mechanisms and offer practical insights for optimizing impregnation processes in wood processing.

References

Amardo, N., Kouali, M., Talbi, M., Atmani, R., Moubarak, F., Mahhate, Z., El Brouzi, A., 2013. Modeling the Absorption of Water by the Wood. International Journal of Science and Research 4(2):4-438.

Augustina, S., Wahyudi, I., Dwianto, W., and Darmawan, T., 2022. Effect of sodium hydroxide, succinic acid and their combination on densified wood properties. Forests 13(2), 293–306. https://doi.org/doi:10.3390/f13020293

Augustina, S., Dwianto, W., Wahyudi, I., Syafii, W., Gérardin, P., Marbun, S.D., 2023. Wood impregnation in relation to its mechanisms and properties enhancement. BioResources 18(2), 4332–4372.

Avramidis, S., 2007. Bound water migration in wood. In Fundamentals of Wood Drying; Perré, P., Ed.; A.R.BO.LOR: Nancy, France, 105–124.

Avramidis, S., Lazarescu, C., Rahimi, S., 2023. Basics of Wood Drying. In book: Springer Handbook of Wood Science and Technology, 679–706. https://doi.org/doi:10.1007/978-3-030-81315-4_13

Báder, M., Németh, R., 2019. Moisture-dependent mechanical properties of longitudinally compressed wood. European Journal of Wood and Wood Products 77, 1009–1019. https://doi.org/doi:10.1007/s00107-019-01448-1

Barbu, M.C., Tudor, E.M., Buresova, K., Petutschnigg, A., 2023. Assessment of Physical and Mechanical Properties Considering the Stem Height and Cross-Section of Paulownia tomentosa (Thunb.) Steud. X elongata (S.Y.Hu) Wood. Forests 14(3), 589. https://doi.org/doi:10.3390/f14030589

Broda, M., Mazela, B., 2017. Application of Methyltrimethoxysilane to Increase Dimensional Stability of Waterlogged Wood. Journal of Cultural Heritage 25, 149–156. https://doi.org/doi:10.1016/j.culher.2017.01.007

Ciegis, R., Starikovicius, V., 2002. Mathematical modeling of wood drying process. Mathematical Modelling and Analysis 7(2), 177–190. https://doi.org/doi:10.3846/13926292.2002.9637190

Ciegis, R., Starikovicius, V., Štikonas, A., 2004. Parameters Identification for Wood Drying. The European Consortium for Mathematics in Industry 5. https://doi.org/doi:10.1007/978-3-662-09510-2_10

EN ISO 15148:2016. Hygrothermal performance of building materials and products – Determination of water absorption coefficient by partial immersion. Amendment 1

Glass, S.V., Zelinka, S.L., 2021. Moisture relations and physical properties of wood. Chapter 4, Wood as an Engineering Material; FPL-GTR-282, Ross, R.J., Ed.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, pp. 19.

Hill, C.A.S., 2006. Wood modification: chemical, thermal and other processes. Wiley Series in Renewable Resources, Chichester, United Kingdom, 239.

Horbachova, O., Buiskykh, N., Mazurchuk, S., Lomaha, V. 2024. Acetylation of aspen and alder wood, preliminary tests. Key Engineering Materials 986, 45–52. https://doi.org/doi:10.4028/p-d9fYLX

Huber, C., Moog, D., Stingl, R., Pramreiter, M., Stadlmann, A., Baumann, G., Praxmarer, G., Gutmann, R., Eisler, H., Müller, U., 2023. Paulownia (Paulownia elongata S.Y.Hu) – Importance for forestry and a general screening of technological and material properties. Wood Mater. Sci. Eng. 18, 1–13. https://doi.org/doi:10.1080/17480272.2023.2172690

Kulman, S., Boiko, L., Bugaenko, Ya., Zagursky, I., 2019a. Finite element simulation the mechanical behaviour of prestressed glulam beams. Scientific Horizons 83(10), 72–80. https://doi.org/doi:10.33249/2663-2144-2019-83-10-72-80

Kulman, S., Boiko, L., Gurová, D.H., Sedliačik, J., 2019b. Prediction the fatigue life of wood-based panels. Wood Research 64(3), 373–388.

Kulman, S., Boiko, L., Gurová, D.Н., Sedliačik, J., 2019. The effect of temperature and moisture changes on modulus of elasticity and modulus of rupture of particleboard. Acta Facultatis Xylologiae Zvolen 61(1), 43–52. https://doi.org/doi:10.17423/afx.2019.61.1.04

Kulman, S., Boiko, L., Bugaenko, Y., Sedliačik, J., 2021a. Creep life prediction by the basic models of deformation-destruction kinetics of wood-based composites. Acta Facultatis Xylologiae Zvolen 63(2), 39–53. https://doi.org/doi:10.17423/afx.2021.63.2.04

Kulman, S., Boiko, L., Sedliačik, J., 2021b. Long-term strength prediction of wood based composites using the kinetic equations. Scientific Horizons 24(3), 9–18. https://doi.org/doi:10.48077/scihor.24(3).2021.9-18

Luo, J., Zhao, Y., Guo, J., Wang, H., 2021. Impregnating low-molecular-weight phenol formaldehyde resin into Chinese fir wood under different compression ratio. J Northwest Agric For Univ 49, 50–58.

Mahhate, Z., Bouamrani, M., Kouail, M., Atmani, R., Yousfi, S., Talbi, M., Brouzi, A., Kenz, A., 2014. Study of transfer process of moisture by wood below the fibersaturation point. IOSR Journal of Applied Chemistry 7(7). 53–56.

Manabendra, D., Saikia, C.N., Baruah, K.K., 2000. Treatment of wood with thermosetting resins: effect on dimensional stability, strength and termite resistance. Indian Journal of Chemical Technology 7, 312–317.

Nguyen, T.T., Xiao, Z., Che, W., Trinh, H.M., Xie, Y., 2019. Effects of Modification with a Combination of Styrene-Acrylic Copolymer Dispersion and Sodium Silicate on the Mechanical Properties of Wood. Journal of Wood Science 65, 1–11. https://doi.org/doi:10.1186/s10086-019-1783-7

Vaziri, M., Dreimol, C., Abrahamsson, L., Niemz, P., Sandberg, D., 2023. Parameter estimation and model selection for water vapour sorption of welded bond-line of European beech and Scots pine. Holzforschung 77(7), 515–526. https://doi.org/10.1515/hf-2022-0013

Shiny, K.S., Sundararaj, R., Vijayalakshmi, G., 2017. Potential use of coconut shell pyrolytic oil distillate (CSPOD) as wood protectant against decay fungi. European Journal of Wood and Wood Products 76 (2), 767–773. https://doi.org/10.1007/s00107-017-1193-8

Tamme, V., Muiste, P., Tamme, H., 2013. Experimental study of resistance type wood moisture sensors for monitoring wood drying process above fibre saturation point, Forestry Studies 59, 28–44. https://doi.org/10.2478/fsmu-2013-0009

Thybring, E.E., Fredriksson, M., 2023. Wood and moisture. In: Niemz P, Teischinger A, Sandberg D (eds) Springer handbook of wood science and technology. Springer International Publishing, Cham, 355–397. https://doi. org/10.1007/978-3-030-81315-4_7

Tsapko, Y., Horbachova, O., Mazurchuk, S., Tsapko, A., Sokolenko, K., Matviichuk, A., 2022. Establishing regularities of wood protection against water absorption using a polymer shell. Eastern-European Journal of Enterprise Technologies 1/10(115), 48–54. https://doi.org/10.15587/1729-4061.2022.252176

Yusof, N., Tahir, P., Seng, H., Khan, M., James, R., 2019. Mechanical and physical properties of cross-laminated timber made from Acacia mangium wood as function of adhesive types. Journal of Wood Science 65(1). https://doi.org/10.1186/s10086-019-1799-z

Wang, W., Huang, Y., Cao, J., Zhu, Y., 2017. Penetration and distribution of paraffin wax in wood of loblolly pine and scots pine studied by time domain NMR spectroscopy. Holzforschung 72(2), 12–131. https://doi.org/10.1515/hf-2017-0030

Downloads

Published

2025-12-15

How to Cite

Kulman, S., Horbachova, O., Vyshnevskyi, A., & Sedliačik, J. (2025). KINETICS AND MODELLING OF WATER ABSORPTION PROCESSES IN DIFFERENT TREE SPECIES. Acta Facultatis Xylologiae Zvolen, 67(2), 5–18. Retrieved from https://ojs.tuzvo.sk/index.php/AFXZ/article/view/151