DEFORMATION OF WOOD – RESIN PHASE BOUNDARY BY MOISTURE CONTENT CHANGES IN WOOD

Authors

  • Barbora Slováčková Technical university in Zvolen
  • Radek Kovařík Technical University in Zvolen

Abstract

In recent years, casting epoxy resins have been on the rise among wood furniture manufacturers. Epoxy resins can be applied to wood of various qualities, including those with defects and textures. A range of problems arise during the production of wood-epoxy resin products. These problems stem from the different characteristics and properties of these materials. The focus of this article is on studying the dimensional changes of openings in beech wood filled with casting epoxy resin during changes in wood moisture content. The stability of the wood-epoxy resin phase boundary during moisture and mechanical stress was also studied. Experimental results confirmed that the dimensions of the openings in wood enlarged proportionately with wood swelling. This resulted in a disruption of the wood-epoxy resin phase boundary stability. The epoxy resin separated from the sides of the openings in wood. During the shrinking process, a limited shrinkage was observed in the vicinity of the openings. This can lead to the formation of cracks in wood. Swelling of the beech wood samples resulted in a significant height difference between the beech wood and the epoxy resin. On the other hand, the shrinking of the samples showed a more tapered height difference between the beech wood and the epoxy resin. The shear strength test did not indicate an adhesive failure but rather a cohesive failure of the epoxy resin. The failure occurred in the epoxy resin, close to the wood-resin phase boundary. This finding confirmed that epoxy resin has a good adhesion to beech wood. 

References

Bilyeu, B., Brostow, W., Menard, K. P., 1999. Epoxy Thermosets and Their Applications I: Chemical Structures and Applications. Journal of Materials Education Vol. 21(5&6): 281-286.

Deka, M., Saikia, C. N., 2000. Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Bioresource Technology 73, 179–181. https://doi.org/10.1016/s0960-8524(99)00167-4

Dieste, A., Krause, A., Bollmus, S., Militz, H., 2008. Physical and mechanical properties of plywood produced with 1.3-dimethylol-4.5-dihydroxyethyleneurea (DMDHEU)-modified veneers of Betula sp. and Fagus sylvatica. Holz Als Roh- Werkstoff 66, p. 281. https://doi.org/10.1007/s00107-008-0247-3

Dubovský, J., Kúdela, J., 1988. Vplyv cyklických zmien vlhkosti na rozmerové zmeny otvorov v dreve a dreva v okolí otvoru [The effect of cyclic changes in humidity on dimensional changes in holes in wood and the wood around the hole]. Drevo, 43, 323–325.

Frihart, C. R., 2005. Wood adhesion and adhesives. Handbook of wood chemistry and wood composites. Boca Raton, Florida: CRC Press, 2005, pp. 215-278.

Guo, D., Guo, N., Fu, F., Yang, S., Li, G., Chu, F., 2022. Preparation and mechanical failure analysis of wood–epoxy polymer composites with excellent mechanical performances. Composites Part B: Engineering, 235, 109748. https://doi.org/10.1016/j.compositesb.2022.109748

Hill, C., 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons 2006. https://doi.org/10.1002/0470021748

Homan, W. J., Jorissen, A. J. M., 2004. Wood modification developments. Heron 49(4): 361 – 385.

Kačík, F., Kúdela, J., Výbohová, E., Jurczyková, T., Čabalová, I., Adamčík, L., Kmeťová, E., Kačíková, D., 2025. Impact of Thermal Treatment and Accelerated Aging on the Chemical Composition, Morphology, and Properties of Spruce Wood. Forests, Vol 16 (1) https://doi.org/10.3390/f16010180

Kovařík R., Tesařová D., 2022. Surface treatment of composite materials based on epoxy casting resins and solid wood. XV. Konference pigmenty a pojiva: sborník/Conference Proceedings. Pardubice: Chemagazín, 2022, pp.71-79.

Kovařík, R., Tesařová, D. Kúdela J., 2023. Analysis of durability characteristics of composite material based on epoxy casting resins and solid wood with focus on surface finish. XVI. Konference pigmenty a pojiva: sborník/conference proceedings. Pardubice: Chemagazín, 2023, pp. 66-74.

Kúdela, J., Čunderlík, I., 2012. Bukové drevo – štruktúra, vlastnosti, použitie. Technická univerzita vo Zvolene, Zvolen [Beech wood – structure, properties, use. Technical University in Zvolen, Zvolen].

Kúdela, J., Dubovský, J., 1986. Rozmerové zmeny otvorov v dreve a dreva v okolí otvoru vplyvom zmien vlhkosti [Dimensional changes in holes in wood and the wood around the hole due to changes in humidity]. Drevo, 41, 361 – 364.

Kúdela, J., Hrčka, R., Svocák, J., Molčanová, S., 2024. Transparent Coating Systems Applied on Spruce Wood and Their Colour Stability on Exposure to an Accelerated Ageing Process. Forests, Vol. 15 (1) https://doi.org/10.3390/f15111865

Kúdela, J., Liptáková, E., 2006. Adhesion of coating materials to wood. Journal of Adhesion Science and Technology, vol. 20,(8), pp. 875–895. https://doi.org/10.1163/156856106777638725

Kumosa, M. S., 2006. Damage Mechanisms in Polymer Matrix Composites in Extreme Environments. Key Engineering Materials. Vol. 324–325, pp. 663–666. Trans Tech Publications, Ltd. https://doi.org/10.4028/0-87849-413-8.663

Kurjatko, S., Kúdela, J., Lawniczak, M., Lübke, H., 1987. Modifikácia imisného smrekového dreva metylmetakrylátom a styrénom [Modification of polluted spruce wood with methyl methacrylate and styrene] Modyfikacja drewna '87. Rydzyna, AR Poznań, pp. 156–166.

Lagaňa, R., Janeka, A., Andor, T., 2021. Selected elastic properties of thermally treated beech wood. In: 9th Hardwood Proceedings, Vol. 9 – PT II: An Underutilized Resource – Hardwood Oriented Research, 56 – 60.

Liptáková, E., Kúdela, J., Paprzycki, O., 1991. The adhesion of polystyrene to wood. Holz als Roh und Werkstoff, 49, vol. 1, 31–37. https://doi.org/10.1007/bf02627548

Pacas P., Tesařová D., Kovařík R., Paul D., 2023. Study of the Effect of Alternating Climatic Conditions and Mechanical Loading on the Strength Properties of Joints Between Cast Epoxy Resin and Solid Wood. XVI. Konference pigmenty a pojiva: sborník/conference proceedings. Pardubice: Chemagazín, 2023, pp. 66-74.

Požgaj, A., Kurjatko, S., Chovanec, D., Babiak, M., 1997. Štruktúra a vlastnosti dreva [Structure and properties of wood] Bratislava: Príroda, 487 p.

Reinprecht, L., 2016. Wood Deterioration, Protection and Maintenance. John Wiley & Sons, p. 357.

Rowell, R.M., 2012. Handbook of Wood Chemistry and wood composites. 2nd Ed. CRC Press, Taylor and Francis group, Boca Raton, Florida, USA p. 703.

Rowell, R. M., Barbour, R. J., 1990. Archaeological wood: Properties, chemistry, and preservation. Washington, DC: American Chemical Society. 472 p.

Sandberg, D., Kutnar, A., Karlsson, O., Jones, D., 2021. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation, 1st ed.; CRC Press: Boca Raton, FL, USA. https://doi.org/10.1201/9781351028226-1

Slabejová, G., Vidholdová, Z., Šmidriaková, M., 2023. Change in the Colour of Transparent Surface Finish on Hydrothermally Treated Wood. Acta Facultatis Xylologiae Zvolen. Vol. 65 (1), p. 45 – 56. https://doi.org/10.17423/afx.2023.65.1.04

Spear, M. J., Curling, S. F., Dimitriou, A., Ormondroyd, G. A., 2021. Review of Functional Treatments for Modified Wood. Coatings, 11, 327. https://doi.org/10.3390/coatings11030327

Stamm, A. J., Seborg, R. M., 1943. Resin treated wood (Impreg). USDA Forest Service Forest Products Laboratory Report No. 1380. Madison, WI.

Stamm, A. J., Seborg, R. M., 1944. Resin treated laminated compressed wood (Compreg). USDA Forest Serv. Forest Prod. Lab. Rep. No. 1381, Madison, WI.

Stefanowski, B., Spear, M., Pitman, A., 2018. Review of the use of PF and related resins for modification of solid wood. In: M. Spear (Ed.), Timber, pp. 165-179.

Vanlandingham, M., R., Eduljee, R., F., Gillespie, J. R., 1999. Moisture diffusion in Epoxy Systems. Journal of Applied Polymer Science 71 (5): 787 – 798, https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-A

Wondmagegnehu, B. T., Legesse, A. A., 2023. Experimental Investigation of Mechanical and Physical Properties on Epoxy Resin with Wood Timber for Furniture Application. Journal of Natural Fibers, 20(2), 2286327. https://doi.org/10.1080/15440478.2023.2286327

Zhou, A., Li, K., Yang, G., Liu, T., Qin, R., & Zou, D., 2025. Effect of temperature and humidity on the mechanical behavior of basalt FRP bonded wood under sustained load: An experimental and atomistic study. Journal of Building Engineering, 104, 112325. https://doi.org/10.1016/j.jobe.2025.112325

Downloads

Published

2025-07-09

How to Cite

Slováčková, B., & Kovařík, R. (2025). DEFORMATION OF WOOD – RESIN PHASE BOUNDARY BY MOISTURE CONTENT CHANGES IN WOOD. Acta Facultatis Xylologiae Zvolen, 67(1), 89–100. Retrieved from https://ojs.tuzvo.sk/index.php/AFXZ/article/view/147