FOUNDATION OF TIMBER STRUCTURES – CRAWL SPACE HEAT AND MOISTURE ANALYSIS WITH AIR AGE SIMULATION AND OCCURRENCE OF MICROMYCETES
Keywords:
timber structure; crawl space; micromycetes; age of the air; openFOAMAbstract
This study is focused on the analysis of the crawl space microclimate in timber structures in the Czech Republic. It focused on the conditions in which the timber and fiberboard elements of the crawl space ceiling structure are located. As part of the analysis, air temperature, relative humidity, air flow within the crawl space were monitored. The average relative humidity within the crawl space reached up to 85% in summer and up to 90% in winter. The residence time of air in the crawl space was determined using air age simulation. A long residence time of air in the crawl space may pose a risk of capturing mold spores on the crawl space wall and ceiling surfaces. OpenFOAM software was used for the simulations. The analysis revealed the presence of fungal spores of the genera Penicillium, Aspergillus, and Cladosporium.
References
Abu-zidan, Y., Mendis, P., Gunawardena, T., 2021. Optimising the computational domain size in CFD simulations of tall buildings. Heliyon, 7(4), e06723-e06723. https://doi.org/10.1016/j.heliyon.2021.e06723
Airaksinen, M., Kurnitski, J., Pasanen, P., Seppänen, O., 2004. Fungal spore transport through a building structure. Indoor air, 14(2), 92-104. https://doi.org/10.1046/j.1600-0668.2003.00215.x
Airaksinen, M., Olsson, L., Kurnitski, J., Hvidberg, S., 2020. Highly insulated crawl spaces with controlled minimal ventilation - Proof of concept by field measurements. E3S Web of Conferences, 172, 7004. https://doi.org/10.1051/e3sconf/202017207004
Airaksinen, M., Kurnitski, J., Seppanen, O., Airaksinen, M., 2003. On the crawl space moisture control in buildings. Proceedings of the Estonian Academy of Sciences: Engineering, 9(1), 34-58. http://search.proquest.com/docview/27909883/
Annila, P., Lahdensivu, J., Suonketo, J., Pentti, M., Vinha, J., 2018. Need to repair moisture- and mold damage in different structures in finnish public buildings. Journal of Building Engineering, 16, 72. https://doi.org/10.1016/j.jobe.2017.12.010
Balík, M., 2008. Odvlhčování staveb (2., přeprac. vyd), [Dehumidification of buildings (2nd, revised ed.)]. Grada.
Bok, G., Hallenberg, N., Åberg, O., 2009. Mass occurrence of Penicillium corylophilum in crawl spaces, south Sweden. Building and environment, 44(12), 2413-2417. https://doi.org/10.1016/j.buildenv.2009.04.001
Brockwell, P., Davis, R., 2016. Introduction to time series and forecasting (Third edition). Springer.
Burke, S., 2007. Crawl spaces in wood framed single family dwellings in Sweden: unwanted yet popular, 10. https://doi.org/10.1108/02630800710740976
ČSN EN ISO 18593. 2019. Mikrobiologie potravinového řetězce - Horizontální metody specifikující techniky vzorkování z povrchů. Úřad pro technickou normalizaci, metrologii a státní zkušebnictví [Microbiology of the food chain - Horizontal methods specifying surface sampling techniques. Office for Technical Standardization, Metrology and State Testing].
Engelhart, S., Loock, A., Skutlarek, D., Sagunski, H., Lommel, A., Färber, H., Exner, M., 2002. Occurrence of Toxigenic Aspergillus versicolor Isolates and Sterigmatocystin in Carpet Dust from Damp Indoor Environments. Applied and Environmental Microbiology, 68(8), 3886-3890. https://doi.org/10.1128/AEM.68.8.3886-3890.2002
Erickson, B., Zhai, Z., 2008. Evaluation of ventilation code requirements for building crawl spaces. Building simulation, 1(4), 311-325. https://doi.org/10.1007/s12273-008-8325-3
Fog Nielsen, K., 2003. Mycotoxin production by indoor molds. Fungal Genetics and Biology, 39(2), 103-117. https://doi.org/10.1016/S1087-1845(03)00026-4
Hayashi, T., Ishizu, Y., Kato, S., Murakami, S., 2002. CFD analysis on characteristics of contaminated indoor air ventilation and its application in the evaluation of the effects of contaminant inhalation by a human occupant. Building and environment, 37(3), 219-230. https://doi.org/10.1016/S0360-1323(01)00029-4
Hyvärinen, A., Meklin, T., Vepsäläinen, A., Nevalainen, A., 2002. Fungi and actinobacteria in moisture-damaged building materials-concentrations and diversity. International biodeterioration, biodegradation 49(1), 27-37. https://doi.org/10.1016/S0964-8305(01)00103-2
International Residential Code, 2018. USA, https://codes.iccsafe.org/content/IRC2018P6
Jarvis, B., Miller, J., 2005. Mycotoxins as harmful indoor air contaminants. Applied microbiology and biotechnology, 66(4), 367-372. https://doi.org/10.1007/s00253-004-1753-9
Keskikuru, T., Salo, J., Huttunen, P., Kokotti, H., Hyttinen, M., Halonen, R., Vinha, J., 2018. Radon, fungal spores and MVOCs reduction in crawl space house: A case study and crawl space development by hygrothermal modelling. Building and environment, 138, 1-10. https://doi.org/10.1016/j.buildenv.2018.04.026
Kurnitski, J., 2000. Crawl space air change, heat and moisture behaviour. Energy and buildings, 32(1), 19-39. https://doi.org/10.1016/S0378-7788(99)00021-3
Kurnitski, J., 2001. Ground moisture evaporation in crawl spaces. Building and environment, 36(3), 359-373. https://doi.org/10.1016/S0360-1323(00)00013-5
Kurnitski, J., Matilainen, M., 2000. Moisture conditions of outdoor air-ventilated crawl spaces in apartment buildings in a cold climate. Energy and buildings, 33(1), 15-29. https://doi.org/10.1016/S0378-7788(00)00061-X
Laukkarinen, A., Vinha, J., 2017. Temperature and relative humidity measurements and data analysis of five crawl spaces. Energy Procedia, 132, 711-716. https://doi.org/10.1016/j.egypro.2017.10.011
Li, X., Li, D., Yang, X., Yang, J., 2003. Total air age: an extension of the air age concept. Building and environment, 38(11), 1263-1269. https://doi.org/10.1016/S0360-1323(03)00133-1
Lynn, M., Overstreet, G., Brack, H., Wayne R., T., 2011. Crawl spaces as reservoirs for transmission of mold to the livable part of the home environment. Reviews on environmental health, (263, p.205-213. https://doi.org/10.1515/reveh.2011.028
Malíř, F., Ostrý, V., 2003. Vláknité mikromycety (plísně), mykotoxiny a zdraví člověka (Vyd. 1). Národní centrum ošetřovatelství a nelékařských zdravotnických oborů [Filamentous Micromycetes (Molds), Mycotoxins and Human Health (Ed. 1). National Center for Nursing and Non-Medical Health Professions].
Mareike, K., Ralf, P., Sven, P., Joachim, S., 2014. City and wind: climate as an architectural instrument. Berlin: DOM Publishers.
Matilainen, M., Kurnitski, J., 2003. Moisture conditions in highly insulated outdoor ventilated crawl spaces in cold climates. Energy and buildings, 35(2), 175-187. https://doi.org/10.1016/S0378-7788(02)00029-4
Pobucká, S., Kalhotka, L., Laichmanová, M., Šuhajda, K., 2024. Monitoring of Microclimatic Conditions and The Occurrence of Micromycetes in Crawl Space. Acta Facultatis Xylologiae Zvolen, (661), 15. https://doi.org/10.17423/afx.2024.66.1.05
Pobucká, S., Kučírek, P., Šuhajda, K., Vorlíčková, P., Žajdlík, T., 2024. Numerical analysis of crawl spaces airflow. Juniorstav: Proceedings 26th International Scientific Conference Of Civil Engineering (pp. 1-8). Vysoké učení technické v Brně, Fakulta stavební. https://doi.org/10.13164/juniorstav.2024.24073
Risberg, M., Westerlund, L., 2020. Experimental investigation of a crawl space located in a sub-arctic climate. Results in Engineering, 7, 100158. https://doi.org/10.1016/j.rineng.2020.100158
Sandberg, M., 1981. What is ventilation efficiency?. Building and environment, 16(2), 123-135. https://doi.org/10.1016/0360-1323(81)90028-7
Sandberg, M., Sjöberg, M., 1983. The use of moments for assessing air quality in ventilated rooms. Building and environment, 18(4), 181-197. https://doi.org/10.1016/0360-1323(83)90026-4
Sato, Y., Nakajima,, Y., 2018. Study on humidity control method of high humidity environment in the crawl space in floor insulated house. ournal of Environmental Engineering (Transactions of AIJ), (83), pp. 901–11. https://doi.org/10.3130/aije.83.901
Shumway, R., Stoffer, D., 2017. Time series analysis and its applications: with R examples (Fourth edition). Springer International Publishing AG.
Solari, G., 2019. Wind Science and Engineering: Origins, Developments, Fundamentals and Advancements (1st ed. 2019). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-18815-3
Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., Shirasawa, T., 2008. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of wind engineering and industrial aerodynamics, 96(10), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058
Vanhoutteghem, L., Morelli, M., Sørensen, L., 2017. Can crawl space temperature and moisture conditions be calculated with a whole-building hygrothermal simulation tool?. Energy Procedia, 132, 688-693. https://doi.org/10.1016/j.egypro.2017.10.007
Viitanen, H., Vinha, J., Salminen, K., Ojanen, T., Peuhkuri, R., Paajanen, L., Lähdesmäki, K., 2010. Moisture and Bio-deterioration Risk of Building Materials and Structures. Journal of building physics, 33(3), 201-224. https://doi.org/10.1177/1744259109343511
Yuan, L., Takada, S., Fukui, K., 2024. Study on mold and condensation risks after vacancy of residential space with walls in contact with the ground. Journal of Building Engineering, 89, 109300. https://doi.org/10.1016/j.jobe.2024.109300
Zhang, X., Weerasuriya, A., Tse, K., 2020. CFD simulation of natural ventilation of a generic building in various incident wind directions: Comparison of turbulence modelling, evaluation methods, and ventilation mechanisms. Energy and buildings, 229, 110516. https://doi.org/10.1016/j.enbuild.2020.110516
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Slávka Pobucká, Pavel Kučírek, Karel Šuhajda, Jan Holešovský

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal publishes in an open access model. It provides immediate open access to its content under the Creative Commons BY 4.0 license.