OPTIMIZED LIGNIN RECOVERY FROM BLACK LIQUOR FOR ENHANCED MECHANICAL PROPERTIES OF ACRYLONITRILE BUTADIENE RUBBER COMPOSITES

Authors

  • Richard Nadányi Slovak University of Technology, Slovakia
  • Michaela Džuganová Slovak University of Technology, Slovakia
  • Aleš Ház Slovak University of Technology, Slovakia

Keywords:

lignin recovery; acrylonitrile butadiene rubber (NBR); design of experiment (DoE); kraft lignin; renewable resources.

Abstract

Due to climate change, the transition from petroleum-based materials to renewable sources is essential. Lignin, a complex aromatic polymer derived from lignocellulosic biomass, offers a promising alternative. This study is focused on optimizing lignin recovery from black liquor based on the LignoBoost™ process and evaluating its application in acrylonitrile butadiene rubber (NBR). The optimized conditions (80 °C, pH 2.0) yielded lignin with significantly lower phenolic hydroxyl group concentrations compared to lignins prepared according to the design of the experiment (DoE). Surface property analysis revealed a high surface free energy of 55.3 mJ/m², indicating potential for interaction with various substances. A DoE approach to investigate the influence of precipitation conditions on lignin properties is employed in the study. NIR spectroscopy and surface property measurements were used for lignin characterization. The results demonstrated that hydroxyl group concentrations, influenced by black liquor freshness and filtration temperature is significantly affected by the preparation method. Notably, pilot lignin (PL) application in NBR composites resulted in a more than twofold increase in tensile strength and elongation at break compared to NBR without additives or with commercial lignin. These findings suggest that lignin recovered through optimized processes can enhance the mechanical properties of NBR, offering a sustainable alternative to traditional additives. This research provides valuable insights for further exploration of lignin’s potential in industrial applications, particularly in the context of lignin recovery and utilization in pulp mills.

References

Biermann, J. C.,1996. Pulping Fundamentals. Handbook of Pulping and Papermaking (Second Edition) (pp. 55–100). Academic Press. https://doi.org/10.1016/B978-012097362-0/50007-8

Gregorová, A., Košíková, B., Moravčík, R., 2006. Stabilization effect of lignin in natural rubber. Polymer Degradation and Stability, 91(2), 229–233. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2005.05.009

Hansen, G. A., 1962. Odor and Fallout Control in Kraft Pulp Mill. Journal of the Air Pollution Control Association, 12(9), 409–436. https://doi.org/10.1080/00022470.1962.10468107

Intapun, J., Rungruang, T., Suchat, S., Cherdchim, B., Hiziroglu, S., 2021. The Characteristics of Natural Rubber Composites with Klason Lignin as a Green Reinforcing Filler: Thermal Stability, Mechanical and Dynamical Properties. Polymers Vol. 13, Page 1109, 13(7), 1109. https://doi.org/10.3390/POLYM13071109

Jiang, C., Bo, J., Xiao, X., Zhang, S., Wang, Z., Yan, G., Wu, Y., Wong, C., He, H., 2020. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Management, 102, 732–742. https://doi.org/10.1016/j.wasman.2019.11.019

Keyoumu, A., Sjödahl, R., Henriksson, G., Ek, M., Gellerstedt, G., Lindström, M. E., 2004. Continuous nano- and ultra-filtration of kraft pulping black liquor with ceramic filters: A method for lowering the load on the recovery boiler while generating valuable side-products. Industrial Crops and Products, 20(2), 143–150.

Makhalema, M., Hlangothi, P., Motloung, S. V., Koao, L. F., Motaung, T. E., 2021. Influence of kraft lignin on the properties of rubber composites. Wood Research, 66(2), 285–296. https://doi.org/10.37763/wr.1336-4561/66.2.285296

Mohamad Aini, N. A., Othman, N., Hussin, M. H., Sahakaro, K., Hayeemasae, N., 2020. Lignin as Alternative Reinforcing Filler in the Rubber Industry: A Review. Frontiers in Materials, 6, 484930. https://doi.org/10.3389/FMATS.2019.00329/BIBTEX

Nadányi, R., Ház, A., Lisý, A., Jablonský, M., Šurina, I., Majová, V., Baco, A., 2022. Lignin Modifications, Applications, and Possible Market Prices. Energies, 15(18), 6520. https://www.mdpi.com/1996-1073/15/18/6520/htm

Öhman, F., Wallmo, H., Theliander, H., 2007. Precipitation and filtration of lignin from black liquor of different origin. Nordic Pulp and Paper Research Journal, 22(2), 188–193. https://doi.org/10.3183/npprj-2007-22-02-p188-193

Patt, R., Kordsachia, O., Süttinger, R., Ohtani, Y., Hoesch, J. F., Ehrler, P., Eichinger, R., Holik, H., Hamm, U., Rohmann, M. E., Mummenhoff, P., Petermann, E., Miller, R. F., Frank, D., Wilken, R., Baumgarten, H. L., Rentrop, G.-H., 2000. Paper and Pulp. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a18_545

Sixta, H., Potthast, A., Krotschek, A. W., 2008. Chemical Pulping Processes. Handbook of Pulp (Vol. 1, pp. 109–509). John Wiley and Sons. https://doi.org/10.1002/9783527619887

Sjöström, E., 1993. Wood Pulping. Wood Chemistry (pp. 114–164). Elsevier. https://doi.org/10.1016/b978-0-08-092589-9.50011-5

Sumerskii, I., Böhmdorfer, S., Tsetsgee, O., Sulaeva, I., Khaliliyan, H., Musl, O., Dorninger, K., Tischer, A., Potthast, K., Rosenau, T., Brereton, R., Potthast, A., 2024. Tapping the Full Potential of Infrared Spectroscopy for the Analysis of Technical Lignins. ChemSusChem, e202301840. https://doi.org/10.1002/CSSC.202301840

Taylor, J. R., Hasegawa, A., Chambers, L. A., 1961. Control of air pollution by site selection and zoning. Monograph Series. World Health Organization, 46, 293–306.

Tomani, P., 2010. The lignoboost process. Cellulose chemistry and technology Cellulose Chem. Technol, 44(3), 53–58.

Tran, C. D., Chen, J., Keum, J. K., Naskar, A. K., 2016. A New Class of Renewable Thermoplastics with Extraordinary Performance from Nanostructured Lignin-Elastomers. Advanced Functional Materials, 26(16), 2677–2685. https://doi.org/10.1002/ADFM.201504990

Wang, H., Liu, W., Huang, J., Yang, D., Qiu, X., 2018. Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers. Polymers Vol. 10, Page 1033, 10(9), 1033. https://doi.org/10.3390/POLYM10091033

Worku, L. A., Bachheti, A., Bachheti, R. K., Rodrigues Reis, C. E., Chandel, A. K., 2023. Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication. Membranes Vol. 13, Page 228, 13(2), 228. https://doi.org/10.3390/MEMBRANES13020228

Zhu, W., Theliander, H., 2015. Precipitation of lignin from softwood black liquor: An investigation of the equilibrium and molecular properties of lignin. BioResources, 9(4), 1696–1714. https://doi.org/10.15376/biores.9.4.6166-6192

Ziesig, R., Tomani, P., Theliander, H., 2014. Production of a pure lignin product part 2: separation of lignin from membrane filtration permeates of black liquor. Cellulose Chemistry And Technology Cellulose Chem. Technol (Vol. 48, Issue 9).

Downloads

Published

2024-12-11

How to Cite

Nadányi, R., Džuganová, M., & Ház, A. (2024). OPTIMIZED LIGNIN RECOVERY FROM BLACK LIQUOR FOR ENHANCED MECHANICAL PROPERTIES OF ACRYLONITRILE BUTADIENE RUBBER COMPOSITES . Acta Facultatis Xylologiae Zvolen, 66(2), 51–60. Retrieved from https://ojs.tuzvo.sk/index.php/AFXZ/article/view/132