PRODUCTION OF BINDER-FREE BOARDS FROM BIODEGRADED ABIES SIBIRICA WOOD

Authors

  • Bayandin Mikhail Reshetnev Siberian State University of Science and Technology
  • Vladimir Ermolin Reshetnev Siberian State University of Science and Technology
  • Sergei Kazitsin Reshetnev Siberian State University of Science and Technology
  • Sergey Eliseev Reshetnev Siberian State University of Science and Technology
  • Nikolay Smertin Reshetnev Siberian State University of Science and Technology
  • Tatyana Strekaleva Reshetnev Siberian State University of Science and Technology

Abstract

The aim of this paper is to investigate the feasibility of obtaining binder-free wood boards from rotted wood at the final stages of biodegradation. The rot-affected wood of Abies sibirica harvested from a stand killed by exposure to Polygraphus proximus Blandford was used as a subject of research. The wood boards from rotted wood were produced by wet hot pressing. The wood pulp was prepared by hydrodynamic treatment in a rotary pulsation disperser. The obtained wood boards with a density of 800 ± 20 kg/m3 and a thickness of 8 mm have an ultimate static bending strength of 28 MPa, modulus of elasticity (MOE) of 3.5 GPa, ultimate tensile strength perpendicular to the plate of 0.92 MPa, swelling in terms of thickness of 4.61 % in 24 hours. The boards dried after swelling tests retained 96% of their initial strength. The boards produced of biodegraded wood correspond to the EN622-3 semihard fibreboards (MB) in terms of mechanical parameters and are significantly superior in terms of water resistance.

References

Akpan, E. I., Wetzel, B., Friedrich, K., 2021. Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 23(6), 2198-2232.

Anderegg, W. R., Hicke, J. A., Fisher, R. A., Allen, C. D., Aukema, J., Bentz, B., Zeppel, M., 2015. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208(3), 674-683. https://doi.org/10.1111/nph.13477

Anderegg, W. R., Plavcová, L., Anderegg, L. D., Hacke, U. G., Berry, J. A., Field, C. B., 2013. Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die off and portends increased future risk. Global change biology, 19(4), 1188-1196.

Asner, G. P., Martin, R. E., Keith, L. M., Heller, W. P., Hughes, M. A., Vaughn, N. R., Balzotti, C., 2018. A spectral mapping signature for the Rapid Ohia Death (ROD) pathogen in Hawaiian forests. Remote Sensing, 10(3), 404.

Barrette, J., Durocher, C., Mansuy, N., Béland, M., & Thiffault, E., 2017. From Unloved Woods to Diserable Renewable Biofuels.

Barrette, J., Thiffault, E., Saint-Pierre, F., Wetzel, S., Duchesne, I., Krigstin, S., 2015. Dynamics of dead tree degradation and shelf-life following natural disturbances: can salvaged trees from boreal forests ‘fuel’the forestry and bioenergy sectors? Forestry: An International Journal of Forest Research, 88(3), 275-290.

Basham, J. T., 1957. The deterioration by fungi of jack, red, and white pine killed by fire in Ontario. Canadian journal of botany, 35(2), 155-172.

Basham, J. T., 1984. Degradation and loss of wood fibre in spruce budworm-killed timber, and effects on utilization. The Forestry Chronicle, 60(1), 10-14.

Basham, J. T., 1986. Biological factors influencing stem deterioration rates and salvage planning in balsam fir killed after defoliation by spruce budworm. Canadian Journal of Forest Research, 16(6), 1217-1229.

Berdanier, A. B., Clark, J. S., 2016. Multiyear drought‐induced morbidity preceding tree death in southeastern US forests. Ecological Applications, 26(1), 17-23.

Bimestre, T. A., Júnior, J. A. M., Botura, C. A., Canettieri, E., Tuna, C. E., 2020. Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment. Bioresource technology, 311, 123540.

Bowyer J. L., Shmulsky R., Haygreen J. G., 2003. Forest products and wood science: an introduction.

Byrne, T., Stonestreet, C., Peter, B., 2007. Characteristics and utilization of post-mountain pine beetle wood in solid wood products. The mountain pine beetle: a synthesis of biology, management and impacts on lodgepole pine, 233-253.

CEN, 1993a. EN 310 Wood-based panels - Determination of modulus of elasticity in bending and of bending strength

CEN, 1993c. EN 317 Particleboards and fibreboards - Determination of swelling in thickness after immersion in water

Campbell F. T., Schlarbaum. Scott E., 2002. Fading forests II: trading away North America's natural heritage. – Healing Stones Foundation.

Cherpakov, V. V., 2012. Bacterial diseases of forest species in pathology of forest. SPb.: SPb GLTU, 200, 292-303.

Curling S. F., Clausen C. A., Winandy J. E., 2002. Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay.

DIN, 1993b. EN 319 Particleboards and fibreboards - Determination of tensile strength perpendicular to the plane of the board

Dietze, M. C., Moorcroft, P. R., 2011. Tree mortality in the eastern and central U nited S tates: patterns and drivers. Global Change Biology, 17(11), 3312-3326.

Eriksson K. E. L., Blanchette R. A., Ander P., 2012. Microbial and enzymatic degradation of wood and wood components. – Springer Science & Business Media.

Erisov, A. M., Lomov, V. D., Volkov, S. N., 2016. Katastroficheskie lesnye pozhary poslednih let, Disastrous forest fires in recent years. Lesnoy vestnik, 5, 106-110.

Ermolin V. N., Bayandin M.A., Ostrykova V.A., 2023. Structural and mechanical properties of hydrodynamic activated wood pulp in additive technologies //News of higher educational institutions. Forest Magazine. 2. – pp. 121-131. https://doi.org/10.37482/0536-1036-2023-2-121-131.

Ermolin V. N., Bayandin M.A., Kazicin S.N., Namyatov A.V., 2020. Water resistance of wood slabs produced without the use of binders //News of higher educational institutions. Forest Magazine. 3 (375). – pp. 151-158. https://doi.org/10.37482/0536-1036-2020-3-151-158

Ermolin, V.N., Bayandin M. A., Kozitsyn S. N., Namyatov A. V., 2019. Formation of the structure of low-density slabs from hydrodynamic activated soft woodworking waste. Proceedings of higher educational institutions. Forest Journal, No. 5 (371), pp. 148-157.

Felby, C., Thygesen, L. G., Sanadi, A., & Barsberg, S. Native lignin for bonding of fiber boards–evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica). Industrial Crops and Products 20.2 (2004): 181-189.

GOST 34599 Medium fibreboards and hardboards. Moscow city, Standartinform, 2019, p.15

Goncalves, F. G., Lelis, R. C. C., Oliveira, J. T. D. S., 2008. Influence of the composition of tannin-urea-formaldehyde resins in the in the physical and mechanicals properties of particleboard. Revista Arvore, 32, 715-722.

Goodell, B., Jellison, J., 2001. Non-enzymatic Gloeophyllum trabeum decay mechanisms: Further study, International Research Group on Wood Preservation. Document No IRG/WP 01-10395: 1-4.

Goodell, B., 2003. Brown-rot fungal degradation of wood: our evolving view. 97-118.

Green III, F., Highley, T. L., 1997. Mechanism of brown-rot decay: paradigm or paradox. International Biodeterioration & Biodegradation, 39(2-3), 113-124.

Hoeger, I., Gleisner, R., Negrón, J., Rojas, O. J., Zhu, J. Y., 2014. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils. Forest Science, 60(3), 502-511. https://doi.org/10.5849/forsci.13-012

ISO P. 5267-1., 2002. Pulps–Determination of the degree of beating–Part 1: Schopper-Riegler method // Polish Committee for Standardization, Warsaw, Poland.

Jayme, G., Büttel, H., 1966. Über die Bestimmung und Bedeutung des Wasserrückhaltevermögens (des WRV-Wertes) verschiedener gebleichter und ungebleichter Zellstoffe. Das Papier, 20(7), 357-366.

Jouzani, G.S., Tabatabaei, M., Aghbashlo, M., 2020. Fungi in Fuel Biotechnology. Fungi in Fuel Biotechnology.

Karinkanta, P., Ämmälä, A., Illikainen, M., Niinimäki, J., 2018. Fine grinding of wood–Overview from wood breakage to applications. Biomass and Bioenergy, 113, 31-44.

Kim G. H., Jee W. K., Ra J. B., 1996. Reduction in mechanical properties of Radiata pine wood associated with incipient brown-rot decay //Journal of the Korean Wood Science and Technology. 24 (1) pp. 81-86.

Kirk, T. Kent., 1975. Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood. 99-107. https://doi.org/10.1515/hfsg.1975.29.3.99

Krner, I., Khne, G., Pecina, H., 2001. Unsterile Fermentation von Hackschnitzeln eine Holzvorbehandlungsmethode fr die Faserplattenherstellung. Holz als Roh-und Werkstoff, 5(59), 334-341.

Lewis K., Thompson, D., Hartley, I., Pasca, S. 2006. Wood decay and degradation in standing lodgepole pine (Pinus contorta var. latifolia Engelm.) killed by mountain pine beetle (Dendroctonus ponderosa Hopkins: Coleoptera).

Liese, W. A. L. T. E. R., 1970. Ultrastructural aspects of woody tissue disintegration. Annual Review of Phytopathology, 8(1), 231-258.

Littell, J. S., McKenzie, D., Peterson, D. L., Westerling, A. L., 2009. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications, 19(4), 1003-1021.

Luo, X., Gleisner, R., Tian, S., Negron, J., Zhu, W., Horn, E., Zhu, J. Y., 2010. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose. Industrial & Engineering Chemistry Research, 49(17), 8258-8266.

Maloney, T. M. 1996. The family of wood composite materials. Forest products journal, 46(2), 18.

Melnik, M. A., Volkova, E. S., Bisirova, E. M., Krivets, S. A., 2018. Assessment of the ecological and economic damage to forest management caused by the invasion of the Ussuri polygraph into the dark coniferous ecosystems of Siberia // Proceedings of the St. Petersburg Forestry Academy. 225. pp. 58-75. https://doi.org/10.21266/2079-4304.2018.225.58-75

Muhcu, S., Nemli, G., Ayrilmis, N., Bardak, S., Baharoğlu, M., Sarı, B., Gerçek, Z., 2015. Effect of log position in European Larch (Larix decidua Mill.) tree on the technological properties of particleboard. Scandinavian Journal of Forest Research, 30(4), 357-362.

Nada, Abd-Alla MA., Samir K., Mohamed El-S., 2000. Thermal behaviour and infrared spectroscopy of cellulose carbamates." Polymer Degradation and Stability 70.3 347-355.

Nassar, M., 1984. Mechanism of thermal decomposition of lignin / M. Nassar, G. MacKay // Wood Fiber Sci. Vol. 16. pp. 441–53.

Nemli, G., Ayan, E., Ay, N., Tiryaki, S., 2018. Utilization potential of waste wood subjected to insect and fungi degradation for particleboard manufacturing. European journal of wood and wood products, 76, 759-766.

Okland, B., Flo, D., Schroeder, M., Zach, P., Cocos, D., Martikainen, P., Voolma, K., 2019. Range expansion of the small spruce bark beetle Ips amitinus: a newcomer in northern Europe. Agricultural and Forest Entomology, 21(3), 286-298.

Poletto, M., Dettenborn, J., Pistor, V., Zeni, M., Zattera, A. J., 2010. Materials produced from plant biomass: Part I: evaluation of thermal stability and pyrolysis of wood. Materials Research, 13, 375-379. https://doi.org/10.1590/S1516-14392010000300016

Poletto, M., Zattera, A. J., Forte, M. M., Santana, R. M., 2012. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. https://doi.org/10.1016/j.biortech.2011.11.122

Qi J., Li, F., Zhang, X., Luo, B., Zhou, Y., & Fan, M., 2022. Different selectivity and biodegradation path of white and brown rot fungi between softwood and hardwood.

Rizzo, D. M., Garbelotto, M., 2003. Sudden oak death: endangering California and Oregon forest ecosystems. Frontiers in Ecology and the Environment, 1(4), 197-204. https://doi.org/10.1890/1540-9295(2003)001[0197:SODECA]2.0.CO;2

Roques, A., Auger-Rozenberg, M. A., Blackburn, T. M., Garnas, J., Pyšek, P., Rabitsch, W., Duncan, R. P., 2016. Temporal and interspecific variation in rates of spread for insect species invading Europe during the last 200 years. Biological invasions, 18, 907-920. https://doi.org/10.1007/s10530-016-1080-y

Ruddick, J. N. R., 1986. Application of a novel strength evaluation technique during screening of wood preservatives. International Research Group on Wood Preservation, Document No. IRG/WP, 2262.

Schell, D. J., Harwood, C., 1994. Milling of lignocellulosic biomass: results of pilot-scale testing. Applied Biochemistry and biotechnology, 45, 159-168. https://doi.org/10.1007/BF02941795

Schwarze F. W. M. R., Engels J., Mattheck C. Fungal strategies of wood decay in trees. – Springer Science & Business Media, 2000.

Shu, B., Ren, Q., Hong, L., Xiao, Z., Lu, X., Wang, W., Zheng, J., 2021. Effect of steam explosion technology main parameters on moso bamboo and poplar fiber. Journal of Renewable Materials, 9(3), 585-597.

Shvidenko A. Z., Shchepashchenko D. G., 2013. Klimaticheskie izmeneniya i lesnye pozhary v Rossii (Climatic changes and forest fires in Russia) //Lesovedenie [Forestry studies]. 5. pp. 50-61.

Solomatnikova, O., Douville, G., Carrière, N., 2011. Profil des produits forestiers: Technologies de bioénergies abase de biomasse forestiere //Centre de recherche industriel Québec.

Tatarintsev, A. I., Aminev, P. I., Mikhaylov, P. V., Goroshko, A. A., 2021. Influence of Forest Conditions on the Spread of Scots Pine Blister Rust and Red Ring Rot in the Priangarye Pine Stands. Land, 10(6), 617.

Volney, W. J. A., 1998. Ten-year tree mortality following a jack pine budworm outbreak in Saskatchewan. Canadian journal of forest research, 28(12), 1784-1793.

Wang, X., Parisien, M. A., Flannigan, M. D., Parks, S. A., Anderson, K. R., Little, J. M., Taylor, S. W., 2014. The potential and realized spread of wildfires across Canada. Global change biology, 20(8), 2518-2530. https://doi.org/10.1111/gcb.12590

Widsten, P., Kandelbauer, A., 2008. Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnology Advances, 26(4), 379-386.

Widsten, Petri, Jaakko E., 2002. Laine, and Simo Tuominen. Radical formation on laccase treatment of wood defibrated at high temperatures: Part 1. Studies with hardwood fibers. Nordic Pulp & Paper Research Journal 17.2. 139-146.

Wilcox, W. W., 1968. Changes in wood microstructure through progressive stages of decay (Vol. 70). US Department of Agriculture, Forest Service, Forest Products Laboratory.

Wu, Z., Tagliapietra, S., Giraudo, A., Martina, K., Cravotto, G., 2019. Harnessing cavitational effects for green process intensification. Ultrasonics Sonochemistry, 52, 530-546.

Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D. H., Liang, D. T., 2006. In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin.” Energy & Fuels 20. pp.388-393.

YuN, B., Pet’ko, V. M., Astapenko, S. A., Akulov, E. N., SA, K., 2011. Ussuriyskiy poligraf-novyy agressivnyy vreditel’pikhtovykh lesov Sibiri [Four-eyed fir bark beetle-a new aggressive pest of Siberian fir forests]. Forestry Bulletin, 4, 78-81.

Downloads

Published

2025-07-09

How to Cite

Mikhail, B., Ermolin, V., Kazitsin, S., Eliseev, S., Smertin , N., & Strekaleva , T. (2025). PRODUCTION OF BINDER-FREE BOARDS FROM BIODEGRADED ABIES SIBIRICA WOOD. Acta Facultatis Xylologiae Zvolen, 67(1), 75–88. Retrieved from https://ojs.tuzvo.sk/index.php/AFXZ/article/view/111