RHEOLOGICAL STUDY OF INDUSTRIAL VARNISHES AT VARIOUS TEMPERATURES

Authors

  • Milena Henke Poznań University of Life Sciences, Poland
  • Barbara Lis Poznań University of Life Sciences, Poland
  • Tomasz Krystofiak Poznan University of Life Sciences

Keywords:

acrylic varnish, conventional viscosity, apparent viscosity, Ostwald de Waele rheological model

Abstract

Superior surface finishing in furniture manufacturing requires an understanding of varnish product rheology. The rheological properties of acrylic primer, basecoat and topcoat, intended for roller varnishing and UV curing are examined in the study. Two methods were used to measure viscosity: Brookfield rheoviscometer and Ford cup. The results discuss the effect of increasing temperature on a decrease in viscosity. Rheological modeling using the Ostwald de Waele power law model explained the non-Newtonian, shear-thinning, rheostable behavior of liquid. It was shown that the flow index of some varnish products in Standard Conditions for Temperature was close to the Newtonian fluid. However increasing consistency index parameter indicates the pseudoplastic behavior of the fluid. The findings highlight the importance of controlling viscosity and temperature during varnish product application processes to ensure optimal coating quality. This research provides valuable insight into the rheological properties of industrial coatings, facilitating advances in coating technology and quality control practices.

References

Bekhta, P., Krystofiak, T., Proszyk, S., Lis, B., 2018. Surface gloss of lacquered medium density fibreboard panels veneered with thermally compressed birch wood. Progress in Organic Coatings, 117, 10–19. https://doi.org/10.1016/j.porgcoat.2017.12.020

Butt, M. A., 2022. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings, 12(8). https://doi.org/10.3390/coatings12081115

Dziubiński, M., Kiljański, T., Sęk, J., 2014. Podstawy Teoretyczne i Metody Pomiarowe Reologii. Monografie Politechniki Łódzkiej.

Gosselin, C. A., 2024. ASTM Standards for Measuring Viscosity. CoatingsTech, 21(3).

Henke, M., Lis, B., Krystofiak, T., 2022. Gloss Level of HDF Finished with Different Numbers of Layers and Hardened with UV Hg-Ga Lamps of Selected Power. Coatings, 12(4). https://doi.org/10.3390/coatings12040533

Jakubíková, K. H., Hodul, J., Hermann, R., Drochytka, R., 2023. Development of a Hydrophobic Polymer Coating in Polyurethane Organic–Mineral Base Containing Waste from Fibreglass Production. Coatings, 13(11), 1934. https://doi.org/10.3390/coatings13111934

Kembłowski, Z., 1973. Reometria płynów nienewtonowskich. Wydawnictwo Naukowo Techniczne.

Klazly, M., Bognár, G., 2022. A novel empirical equation for the effective viscosity of nanofluids based on theoretical and empirical results. International Communications in Heat and Mass Transfer, 135, 106054. https://doi.org/10.1016/j.icheatmasstransfer.2022.106054

Krystofiak, T., 2023. Wood Industry - Past, Present and Future Outlook (G. Du & X. Zhou, Eds.). IntechOpen. https://doi.org/10.5772/intechopen.100751Makarewicz, E. (1991). Struktury tiksotropowej organodyspersji polichlorku winylu na podstawie analizy modeli płynięcia Crossa i Carreau. Przemysł Chemiczny, 70(11), 468–471.

Ozdemİr, T., Bozdoğan, Ö., Mengeloglu, F., 2013. Effects of varnish viscosity and film thickness on adhesion strength of coated wood. Pro Lingo, 9(4), 164–168.

Ozgenc, O., 2019. Determination of some technological properties on coating systems based acrylic resin with UV absorber. IF6C 2016 International Furniture Congress 13-15 October 2016, 283–285.

Proszyk, S.,1999. Technologia tworzyw drzewnych wykończenie powierzchni. WSiP.

Proszyk, S., Władyka-Przybylak, M., Kystofiak, T., 1995. Badania właściwości reologicznych ogniochronnej żywicy AFF podczas składowania. Roczniki Akademii Rolniczej w Poznaniu – CCLXXIX, Chem. Technol. Drew., 27(28), 147–155.

Ruśkowska, P., 2010. Wiskozymetryczne materiały odniesienia i wzorcowanie kubków wypływowych In Biuletyn Głównego Urzędu Miar Nr (Vol. 1, Issue 16).

Saranjam, N., Chandra, S., Mostaghimi, J., Fan, H., Simmer, J., 2016. Orange peel formation due to surface tension-driven flows within drying paint films. Journal of Coatings Technology and Research, 13(3), 413–426. https://doi.org/10.1007/s11998-015-9752-6

Schramm, G., 1998. Reologia. Podstawy i zastosowania. Ośrodek Wydawnictw Naukowych, Poznań.

Wiśniewski, R., 1988. Problemy badań reologicznych w przemyśle tworzyw i farb. Polimery: Tworzywa Wielkocząsteczkowe , 33(4), 133–136.

Zheng, S. X., Chen, H. S., 2023. Correlations of rheological methods to coatings’ performance. Progress in Organic Coatings, 177, 107403. https://doi.org/10.1016/j.porgcoat.2022.107403

Zorll, U., 1980. Viskosiätsmeßgrößen und ihre polymeren Einflußfaktoren. Adhäsion, 5, 128–131.

Downloads

Published

2024-07-03

How to Cite

Henke, M., Lis, B., & Krystofiak, T. (2024). RHEOLOGICAL STUDY OF INDUSTRIAL VARNISHES AT VARIOUS TEMPERATURES. Acta Facultatis Xylologiae Zvolen, 66(1), 105–114. Retrieved from https://ojs.tuzvo.sk/index.php/AFXZ/article/view/105